Home
Class 12
MATHS
If |(1,1,1),(2,b,c),(4,b^(2),c^(2))| and...

If `|(1,1,1),(2,b,c),(4,b^(2),c^(2))|` and `|A| = in [2, 16]. 2, b, c` and in A.P. the range of c is

A

`[3,2+2^(3//4)]`

B

`(2+2^(3//4), 4)`

C

`[4,6]`

D

`[2,3]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the range of \( c \) given the determinant \( |(1,1,1),(2,b,c),(4,b^2,c^2)| \) and the conditions that \( |A| \) lies in the interval [2, 16] and that \( 2, b, c \) are in arithmetic progression (A.P.). ### Step-by-Step Solution: 1. **Set Up the Determinant**: We start with the determinant: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 2 & b & c \\ 4 & b^2 & c^2 \end{vmatrix} \] 2. **Apply Row Operations**: We can simplify the determinant using row operations. Subtract the first row from the second and third rows: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 2-1 & b-1 & c-1 \\ 4-1 & b^2-1 & c^2-1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & b-1 & c-1 \\ 3 & b^2-1 & c^2-1 \end{vmatrix} \] 3. **Calculate the Determinant**: Now we can calculate the determinant using cofactor expansion along the first row: \[ D = 1 \cdot \begin{vmatrix} b-1 & c-1 \\ b^2-1 & c^2-1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & c-1 \\ 3 & c^2-1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & b-1 \\ 3 & b^2-1 \end{vmatrix} \] The first determinant simplifies to: \[ (b-1)(c^2-1) - (c-1)(b^2-1) = (b-1)(c^2-1) - (c-1)(b^2-1) \] The second determinant simplifies to: \[ 1(c^2-1) - 3(c-1) = c^2 - 1 - 3c + 3 = c^2 - 3c + 2 \] The third determinant simplifies to: \[ 1(b^2-1) - 3(b-1) = b^2 - 1 - 3b + 3 = b^2 - 3b + 2 \] 4. **Combine the Determinants**: Thus, we have: \[ D = (b-1)(c^2-1) - (c-1)(b^2-1) - (c^2 - 3c + 2) + (b^2 - 3b + 2) \] 5. **Substituting A.P. Condition**: Since \( 2, b, c \) are in A.P., we have: \[ b = 2 + d, \quad c = 2 + 2d \] for some \( d \). 6. **Expressing the Determinant in Terms of \( d \)**: Substitute \( b \) and \( c \) into \( D \) and simplify: \[ D = 2d^3 \] 7. **Finding the Range of \( d \)**: Given \( |D| \in [2, 16] \): \[ 2d^3 \in [2, 16] \implies d^3 \in [1, 8] \implies d \in [1, 2] \] 8. **Finding the Range of \( c \)**: Since \( c = 2 + 2d \): \[ c \in [2 + 2 \cdot 1, 2 + 2 \cdot 2] = [4, 6] \] ### Final Answer: The range of \( c \) is \( [4, 6] \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ARCHIVE|78 Videos
  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

"If "(1)/(a+b),(1)/(2b),(1)/(b+c) are in A.P., then prove that a, b, c are in G.P.

If a^(2) , b^(2) , c^(2) are in A.P , pove that a/(a+c) , b/(c+a) , c/(a+b) are in A.P .

If a^2(b+c),b^2(c+a),c^2(a+b), are in A.P. show that either a ,b ,c are in A.P., or a b+b c+c a=0.

If (1)/(b+c),(1)/(c+a),(1)/(a+b) are in A.P., then

If a^(2), b^(2),c^(2) are in A.P prove that (a)/(b+c), (b)/(c+a) ,(c)/(a+b) are in A.P.

If a\ (1/b+1/c),\ b(1/c+1/a),\ c(1/a+1/b) are in A.P. prove that a ,\ b ,\ c are in A.P.

If a\ (1/b+1/c),\ b(1/c+1/a),\ c(1/a+1/b) are in A.P. prove that a ,\ b ,\ c are in A.P.

If a,b,c are in H.P , b,c,d are in G.P and c,d,e are in A.P. , then the value of e is (a) (ab^(2))/((2a-b)^(2)) (b) (a^(2)b)/((2a-b)^(2)) (c) (a^(2)b^(2))/((2a-b)^(2)) (d) None of these

If l n(a+c),l n(a-c) and l n(a-2b+c) are in A.P., then (a) a ,b ,c are in A.P. (b) a^2,b^2, c^2, are in A.P. (c) a ,b ,c are in G.P. (d) a ,b ,c are in H.P.

In a triangle ABC, if a, b, c are in A.P. and (b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2 , then find the value of sin B

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE MAIN ARCHIVE
  1. If [{:(1, 1), (0,1):}]*[{:(1, 2), (0,1):}]*[{:(1, 3), (0,1):}]cdotcdot...

    Text Solution

    |

  2. Let alpha and beta be the roots of the equation x^(2) + x + 1 = 0. ...

    Text Solution

    |

  3. If |(1,1,1),(2,b,c),(4,b^(2),c^(2))| and |A| = in [2, 16]. 2, b, c and...

    Text Solution

    |

  4. If A = [(1,sin theta, 1),(-sintheta, 1, sin theta),(-1, -1sin theta, 1...

    Text Solution

    |

  5. |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

    Text Solution

    |

  6. Let a(1),a(2),a(3), …, a(10) be in G.P. with a(i) gt 0 for i=1, 2, …, ...

    Text Solution

    |

  7. Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0. Then the minimum v...

    Text Solution

    |

  8. Let d in R, and A[{:(,-2,4+d,(sin theta-2)),(,1,(sin theta)+2,d),(,5,(...

    Text Solution

    |

  9. If B = [{:(5, 2alpha, 1),(0, 2, 1),(alpha, 3, -1):}] is the inver...

    Text Solution

    |

  10. Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost...

    Text Solution

    |

  11. Let A and B be two invertible matrices of order 3xx3. If det. (ABA^(T)...

    Text Solution

    |

  12. If A = [(costheta,-sintheta),(sintheta,costheta)], then the matrix A^(...

    Text Solution

    |

  13. If [x] denotes the greatest integer le x, then the system of liner equ...

    Text Solution

    |

  14. Let lambda be a real number for which the system of linear equations ...

    Text Solution

    |

  15. If the system of linear equation x+y+z=5, x+2y+2z = 6, x+3y + lambda z...

    Text Solution

    |

  16. If the system of equations, 2x + 3y-z = 0, x + ky -2z = 0 " and " 2x-y...

    Text Solution

    |

  17. If the system of linear equations x-2y + kz = 1, 2x + y+ z = 2, 3x-y...

    Text Solution

    |

  18. The greatest value of for which the system of linear equations x-c...

    Text Solution

    |

  19. The set of all values of lambda for which the system of linear equatio...

    Text Solution

    |

  20. An ordered pair (alpha, beta) for which the system of linear equations...

    Text Solution

    |