Home
Class 12
MATHS
If the adjoint of a 3 xx 3 matrix P is [...

If the adjoint of a `3 xx 3` matrix P is `[{:(,1,4,4),(,2,1,7),(,1,1,3):}]`, then the possible value(s) of the determinant of P is (are)

A

`-2`

B

`-1`

C

`1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the possible value(s) of the determinant of the matrix \( P \) given that the adjoint of \( P \) is \[ \text{adj}(P) = \begin{pmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3 \end{pmatrix}. \] ### Step-by-Step Solution: **Step 1: Understand the relationship between the adjoint and the determinant.** The formula relating the determinant of a matrix and its adjoint is given by: \[ \text{det}(\text{adj}(P)) = (\text{det}(P))^{n-1} \] where \( n \) is the order of the matrix. For a \( 3 \times 3 \) matrix, \( n = 3 \), so: \[ \text{det}(\text{adj}(P)) = (\text{det}(P))^{2}. \] **Hint for Step 1:** Remember the formula that connects the determinant of a matrix and its adjoint. --- **Step 2: Calculate the determinant of the adjoint matrix.** We need to compute the determinant of the adjoint matrix: \[ \text{adj}(P) = \begin{pmatrix} 1 & 4 & 4 \\ 2 & 1 & 7 \\ 1 & 1 & 3 \end{pmatrix}. \] Using the determinant formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg), \] where \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \). For our matrix: - \( a = 1, b = 4, c = 4 \) - \( d = 2, e = 1, f = 7 \) - \( g = 1, h = 1, i = 3 \) Calculating the determinant: \[ \text{det}(\text{adj}(P)) = 1(1 \cdot 3 - 7 \cdot 1) - 4(2 \cdot 3 - 7 \cdot 1) + 4(2 \cdot 1 - 1 \cdot 1). \] Calculating each term: 1. \( 1(3 - 7) = 1 \cdot (-4) = -4 \) 2. \( -4(6 - 7) = -4 \cdot (-1) = 4 \) 3. \( 4(2 - 1) = 4 \cdot 1 = 4 \) Adding these together: \[ \text{det}(\text{adj}(P)) = -4 + 4 + 4 = 4. \] **Hint for Step 2:** Break down the determinant calculation into smaller parts and apply the determinant formula carefully. --- **Step 3: Relate the determinant of the adjoint to the determinant of \( P \).** From our earlier relationship, we have: \[ \text{det}(\text{adj}(P)) = (\text{det}(P))^{2}. \] Substituting the value we found: \[ 4 = (\text{det}(P))^{2}. \] **Step 4: Solve for the determinant of \( P \).** Taking the square root of both sides gives: \[ \text{det}(P) = \sqrt{4} = 2 \quad \text{or} \quad \text{det}(P) = -\sqrt{4} = -2. \] Thus, the possible values of the determinant of \( P \) are \( 2 \) and \( -2 \). **Final Answer: The possible values of the determinant of \( P \) are \( 2 \) and \( -2 \).** ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE MAIN ARCHIVE|92 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If the adjoint of a 3x3 matrix P is (1 4 4) (2 1 7) (1 1 3) , then the possible value(s) of the determinant of P is (are) (A) -2 (B) -1 (C) 1 (D) 2

The adjoint of the matrix A= [{:( 1,2),( 3,-5) :}] is

find the adjoint of the matrix A=[(1,2,3),(0,5,0),(2,4,3)]

Find the adjoint of the matrix A=[(1,1,1),(2,1,-3),(-1,2,3)] .

1.Find the adjoint of the matrix A= [[1,2],[3,4]]

Write the adjoint of the matrix A=[(-3, 4),(7,-2)] .

The determinant of [(p,3),(-2,1)] is

Let P be a matrix of order 3xx3 such that all the entries in P are from the set {-1,\ 0,\ 1} . Then, the maximum possible value of the determinant of P is ______.

Find adjoint of the matrice in [(1, 2),( 3, 4)]

The rank of the matrix A={:[(1,2,3,4),(4,3,2,1)]:} , is

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. the determinant |{:(a,,b,,aalpha+b),(b,,c,,balpha+c),(aalpha+b,,balpha...

    Text Solution

    |

  2. Let M be a 2xx2 symmetric matrix with integer entries. Then , M is i...

    Text Solution

    |

  3. If the adjoint of a 3 xx 3 matrix P is [{:(,1,4,4),(,2,1,7),(,1,1,3):}...

    Text Solution

    |

  4. Let X \ a n d \ Y be two arbitrary, 3xx3 , non-zero, skew-symmetric ma...

    Text Solution

    |

  5. Which of the following values of alpha satisfying the equation |(1+alp...

    Text Solution

    |

  6. Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[...

    Text Solution

    |

  7. Let alpha, lambda , mu in R.Consider the system of linear equations ...

    Text Solution

    |

  8. Which of the following is(are) NOT of the square of a 3xx3 matrix with...

    Text Solution

    |

  9. Let S be the set of all column matrices [(b(1)),(b(2)),(b(3))] such th...

    Text Solution

    |

  10. M=[{:(sin^(4)theta,-1-sin^(2)theta),(1+cos^(2)theta,cos^(4)theta):}]=a...

    Text Solution

    |

  11. Let M=[{:(0,1,a),(1,2,3),(3,b,1):}]and adj M =[{:(-1,,1,,-1),(8,,-6,,2...

    Text Solution

    |

  12. For positive numbers x, y and z, the numerical value of the determinan...

    Text Solution

    |

  13. The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| ...

    Text Solution

    |

  14. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  15. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  16. "Let "plambda^(4) + qlambda^(3) +rlambda^(2) + slambda +t =|{:(lambda^...

    Text Solution

    |

  17. Let K be a positive real number and A=[(2k-1,2sqrt(k),2sqrt(k)),(2sqrt...

    Text Solution

    |

  18. A system of equations lambdax +y +z =1,x+lambday+z=lambda, x + y + lam...

    Text Solution

    |

  19. Let M be a 3xx3 matrix satisfying M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1...

    Text Solution

    |

  20. Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1), and r, s in {1, 2, 3}. Let ...

    Text Solution

    |