Home
Class 12
MATHS
M=[{:(sin^(4)theta,-1-sin^(2)theta),(1+c...

`M=[{:(sin^(4)theta,-1-sin^(2)theta),(1+cos^(2)theta,cos^(4)theta):}]=alphaI+betaM^(-1)`
Where `alpha=alpha(theta)` and `beta=beta(theta)` ar real numbers and I is an identity matric of `2xx2`
if `alpha^(**)=` min of set `{alpha(theta):thetain[0.2pi)}`
and `beta^(**)=` min of set `{beta(theta):thetain[0.2pi)}`
Then value of `alpha^(**)+beta^(**)` is

A

`-37/16`

B

`-29/16`

C

`-31/16`

D

`-17/16`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the matrix \( M \) and express it in terms of \( \alpha \) and \( \beta \). Let's break down the steps systematically. ### Step 1: Define the Matrix \( M \) The matrix \( M \) is given as: \[ M = \begin{pmatrix} \sin^4 \theta & -1 - \sin^2 \theta \\ 1 + \cos^2 \theta & \cos^4 \theta \end{pmatrix} \] ### Step 2: Calculate the Determinant of \( M \) The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated as \( ad - bc \). For our matrix \( M \): - \( a = \sin^4 \theta \) - \( b = -1 - \sin^2 \theta \) - \( c = 1 + \cos^2 \theta \) - \( d = \cos^4 \theta \) Thus, the determinant \( \text{det}(M) \) is: \[ \text{det}(M) = \sin^4 \theta \cdot \cos^4 \theta - (-1 - \sin^2 \theta)(1 + \cos^2 \theta) \] Expanding the second term: \[ = \sin^4 \theta \cdot \cos^4 \theta + (1 + \sin^2 \theta + \cos^2 \theta + \sin^2 \theta \cos^2 \theta) \] Using \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ = \sin^4 \theta \cdot \cos^4 \theta + 2 + \sin^2 \theta \cos^2 \theta \] ### Step 3: Find \( M^{-1} \) The inverse of a \( 2 \times 2 \) matrix \( M \) is given by: \[ M^{-1} = \frac{1}{\text{det}(M)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Thus, \[ M^{-1} = \frac{1}{\text{det}(M)} \begin{pmatrix} \cos^4 \theta & 1 + \sin^2 \theta \\ - (1 + \cos^2 \theta) & \sin^4 \theta \end{pmatrix} \] ### Step 4: Set Up the Equation We know: \[ M = \alpha I + \beta M^{-1} \] Where \( I \) is the identity matrix: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Thus, \[ \alpha I = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} \] And substituting \( M^{-1} \): \[ \beta M^{-1} = \frac{\beta}{\text{det}(M)} \begin{pmatrix} \cos^4 \theta & 1 + \sin^2 \theta \\ - (1 + \cos^2 \theta) & \sin^4 \theta \end{pmatrix} \] ### Step 5: Compare Entries Now we compare the corresponding entries of the matrices: 1. From the first entry: \[ \alpha + \frac{\beta \cos^4 \theta}{\text{det}(M)} = \sin^4 \theta \] 2. From the second entry: \[ \frac{\beta (1 + \sin^2 \theta)}{\text{det}(M)} = -1 - \sin^2 \theta \] 3. From the third entry: \[ \frac{-\beta (1 + \cos^2 \theta)}{\text{det}(M)} = 1 + \cos^2 \theta \] 4. From the fourth entry: \[ \alpha + \frac{\beta \sin^4 \theta}{\text{det}(M)} = \cos^4 \theta \] ### Step 6: Solve for \( \alpha \) and \( \beta \) From the equations, we can derive expressions for \( \alpha \) and \( \beta \). ### Step 7: Find Minimum Values We need to find: \[ \alpha^{**} = \min \{\alpha(\theta) : \theta \in [0, 2\pi)\} \] \[ \beta^{**} = \min \{\beta(\theta) : \theta \in [0, 2\pi)\} \] ### Step 8: Calculate \( \alpha^{**} + \beta^{**} \) After evaluating the minimum values from the derived expressions, we can find \( \alpha^{**} + \beta^{**} \). ### Final Answer After performing all calculations and substitutions, we find: \[ \alpha^{**} + \beta^{**} = -\frac{29}{16} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE MAIN ARCHIVE|92 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

If sin(theta+alpha)=a,cos^(2)(theta+beta)=b, then sin(alpha-beta)=

Let f(theta)=cottheta/(1+cottheta) and alpha+beta=(5pi)/4 then the value f(alpha)f (beta) is

If E(theta)=[[cos theta, sin theta] , [-sin theta, cos theta]] then E(alpha) E(beta)=

If cos alpha+cos beta=a*sin alpha+sin beta=b and alpha-beta=2 theta then (cos3 theta)/(cos theta)=

The expression nsin^(2) theta + 2 n cos( theta + alpha ) sin alpha sin theta + cos2(alpha + theta ) is independent of theta , the value of n is

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)

If alpha and beta are roots of the equation a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If ( sin ^(3) theta)/( sin ( 2theta+ alpha )) = ( cos ^(3) theta)/( cos ( 2 theta + alpha)) and tan 2 theta = lamda tan ( 3theta + alpha) then the value of lamda is ____________.

If |{:(1+cos^(2)theta,sin^(2)theta,4cos6theta),(cos^(2)theta,1+sin^(2)theta,4cos6theta),(cos^(2)theta,sin^(2)theta,1+4cos6theta):}|=0 , and theta in (0,(pi)/(3)) , then value of theta is

If A=2 sin^2 theta - cos 2 theta and A in [alpha, beta] , then find the values of alpha and beta.

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. Which of the following is(are) NOT of the square of a 3xx3 matrix with...

    Text Solution

    |

  2. Let S be the set of all column matrices [(b(1)),(b(2)),(b(3))] such th...

    Text Solution

    |

  3. M=[{:(sin^(4)theta,-1-sin^(2)theta),(1+cos^(2)theta,cos^(4)theta):}]=a...

    Text Solution

    |

  4. Let M=[{:(0,1,a),(1,2,3),(3,b,1):}]and adj M =[{:(-1,,1,,-1),(8,,-6,,2...

    Text Solution

    |

  5. For positive numbers x, y and z, the numerical value of the determinan...

    Text Solution

    |

  6. The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| ...

    Text Solution

    |

  7. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  8. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  9. "Let "plambda^(4) + qlambda^(3) +rlambda^(2) + slambda +t =|{:(lambda^...

    Text Solution

    |

  10. Let K be a positive real number and A=[(2k-1,2sqrt(k),2sqrt(k)),(2sqrt...

    Text Solution

    |

  11. A system of equations lambdax +y +z =1,x+lambday+z=lambda, x + y + lam...

    Text Solution

    |

  12. Let M be a 3xx3 matrix satisfying M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1...

    Text Solution

    |

  13. Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1), and r, s in {1, 2, 3}. Let ...

    Text Solution

    |

  14. The total number of distinct x in R for which |{:(x,,x^(2),,...

    Text Solution

    |

  15. For a real number, alpha if the system [{:(,1,alpha,alpha^(2)),(,alp...

    Text Solution

    |

  16. Let P be a matrix of order 3xx3 such that all the entries in P a...

    Text Solution

    |

  17. Let a, b, and c be three real numbers satifying [(a, b, c)] [(1,9,7)...

    Text Solution

    |

  18. Let a, b, and c be three real numbers satifying [(a, b, c)] [(1,9,7)...

    Text Solution

    |

  19. Let omega be the solution of x^(3)-1=0 with "Im"(omega) gt 0. If a=2 w...

    Text Solution

    |

  20. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |