Home
Class 12
MATHS
Let M=[{:(0,1,a),(1,2,3),(3,b,1):}]and a...

Let `M=[{:(0,1,a),(1,2,3),(3,b,1):}]`and adj `M =[{:(-1,,1,,-1),(8,,-6,,2),(-5,,3,,-1):}]`
where a and b are real numbers. Which of the following options is/are correct ?

A

If `M[(alpha),(beta),(gamma)]=[(1),(2),(3)]` , then `alpha-beta+gamma=3`

B

`(adjM)^(-1) + adjM^(-1)=-M`

C

a+b=3

D

`det(adjM^2)=81`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrices \( M \) and \( \text{adj} M \) and find the values of \( a \) and \( b \). We will then check which of the given options are correct. ### Step 1: Write down the matrices We have: \[ M = \begin{pmatrix} 0 & 1 & a \\ 1 & 2 & 3 \\ 3 & b & 1 \end{pmatrix} \] \[ \text{adj} M = \begin{pmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{pmatrix} \] ### Step 2: Calculate the determinant of \( M \) The determinant of a 3x3 matrix \( M \) can be calculated using the formula: \[ \text{det}(M) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix \( M \): \[ \text{det}(M) = 0 \cdot (2 \cdot 1 - 3 \cdot b) - 1 \cdot (1 \cdot 1 - 3 \cdot 3) + a \cdot (1 \cdot b - 2 \cdot 3) \] Calculating this gives: \[ \text{det}(M) = 0 - (1 - 9) + a(b - 6) = 8 + a(b - 6) \] ### Step 3: Use the property of adjugate We know that: \[ M \cdot \text{adj} M = \text{det}(M) \cdot I \] where \( I \) is the identity matrix. Thus, we can find the determinant of \( M \) by using the first element of the product \( M \cdot \text{adj} M \). ### Step 4: Calculate \( M \cdot \text{adj} M \) Calculating the first element of \( M \cdot \text{adj} M \): \[ M \cdot \text{adj} M = \begin{pmatrix} 0 & 1 & a \\ 1 & 2 & 3 \\ 3 & b & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1 \end{pmatrix} \] Calculating the first row: \[ 0 \cdot (-1) + 1 \cdot 8 + a \cdot (-5) = 8 - 5a \] The first element of the result must equal \( \text{det}(M) \). ### Step 5: Set up equations From the determinant calculation: \[ 8 + a(b - 6) = 8 - 5a \] This simplifies to: \[ a(b - 6) + 5a = 0 \implies a(b - 6 + 5) = 0 \implies a(b - 1) = 0 \] This gives us two cases: 1. \( a = 0 \) 2. \( b = 1 \) ### Step 6: Calculate the second equation using the second element Using the second row of \( M \) and the second column of \( \text{adj} M \): \[ 1 \cdot 1 + 2 \cdot (-6) + 3 \cdot 3 = 1 - 12 + 9 = -2 \] This should equal \( \text{det}(M) \) as well. ### Step 7: Solve for \( a \) and \( b \) From the calculations, we can conclude: - If \( a = 0 \), then \( b \) can be any real number. - If \( b = 1 \), then \( a \) can be any real number. ### Step 8: Check the options Now we need to check the options given in the question: 1. \( a + b = 3 \) 2. \( a - b = 1 \) 3. \( a = 2 \) 4. \( b = 1 \) From our findings: - If \( a = 2 \), then \( b = 1 \) satisfies \( a + b = 3 \) and \( a - b = 1 \). - Therefore, options 1, 2, and 3 are correct. ### Conclusion The correct options are: - \( a + b = 3 \) (True) - \( a - b = 1 \) (True) - \( a = 2 \) (True) - \( b = 1 \) (True)
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE MAIN ARCHIVE|92 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

Let A=[{:(1,2),(3,4):}]and B = [{:(a,0),(0,b):}] where a, b are natural numbers, then which one of the following is correct ?

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

Let A+2B={:[(3,2,-3),(1,0,4),(3,1,2)]:}and-A-B={:[(1,0,3),(-1,4,1),(3,2,1)]:} . Find A and B.

If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is

If {:A=[(0,1,-1),(2,1,3),(3,2,1)]:} then (A(adj A)A^(-1))A=

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

Let A=[{:(,4,-2),(,6,-3):}], B=[{:(,0,2),(,1,-1):}] and C=[{:(,-2,3),(,1,-1):}] . Find A^2-A+BC .

Let A=[{:(,1,0),(,2,1):}], B=[{:(,2,3),(,-1,0):}] . Find A^2+AB+B^2

Let A={:[(1,2,3),(0,1,0)]:}andB={:[(-1,4,3),(1,0,0)]:} Find 2A +3B.

Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(,-1,4):}] . Find A^2+AC-5B .

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. Let S be the set of all column matrices [(b(1)),(b(2)),(b(3))] such th...

    Text Solution

    |

  2. M=[{:(sin^(4)theta,-1-sin^(2)theta),(1+cos^(2)theta,cos^(4)theta):}]=a...

    Text Solution

    |

  3. Let M=[{:(0,1,a),(1,2,3),(3,b,1):}]and adj M =[{:(-1,,1,,-1),(8,,-6,,2...

    Text Solution

    |

  4. For positive numbers x, y and z, the numerical value of the determinan...

    Text Solution

    |

  5. The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| ...

    Text Solution

    |

  6. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  7. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  8. "Let "plambda^(4) + qlambda^(3) +rlambda^(2) + slambda +t =|{:(lambda^...

    Text Solution

    |

  9. Let K be a positive real number and A=[(2k-1,2sqrt(k),2sqrt(k)),(2sqrt...

    Text Solution

    |

  10. A system of equations lambdax +y +z =1,x+lambday+z=lambda, x + y + lam...

    Text Solution

    |

  11. Let M be a 3xx3 matrix satisfying M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1...

    Text Solution

    |

  12. Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1), and r, s in {1, 2, 3}. Let ...

    Text Solution

    |

  13. The total number of distinct x in R for which |{:(x,,x^(2),,...

    Text Solution

    |

  14. For a real number, alpha if the system [{:(,1,alpha,alpha^(2)),(,alp...

    Text Solution

    |

  15. Let P be a matrix of order 3xx3 such that all the entries in P a...

    Text Solution

    |

  16. Let a, b, and c be three real numbers satifying [(a, b, c)] [(1,9,7)...

    Text Solution

    |

  17. Let a, b, and c be three real numbers satifying [(a, b, c)] [(1,9,7)...

    Text Solution

    |

  18. Let omega be the solution of x^(3)-1=0 with "Im"(omega) gt 0. If a=2 w...

    Text Solution

    |

  19. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  20. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |