Home
Class 12
MATHS
For positive numbers x, y and z, the num...

For positive numbers x, y and z, the numerical value of the determinant `|{:(1,"log"_(x)y, "log"_(x)z),("log"_(y)x, 1, "log"_(y)z),("log"_(z)x, "log"_(z)y, 1):}|` is……

Text Solution

AI Generated Solution

The correct Answer is:
To find the numerical value of the determinant \[ D = \begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 1 & \log_y z \\ \log_z x & \log_z y & 1 \end{vmatrix} \] we will follow these steps: ### Step 1: Rewrite the logarithms Using the change of base formula for logarithms, we can express the logarithms in terms of natural logarithms (or any common base). Specifically, we have: \[ \log_a b = \frac{\log b}{\log a} \] Thus, we can rewrite the determinant as: \[ D = \begin{vmatrix} 1 & \frac{\log y}{\log x} & \frac{\log z}{\log x} \\ \frac{\log x}{\log y} & 1 & \frac{\log z}{\log y} \\ \frac{\log x}{\log z} & \frac{\log y}{\log z} & 1 \end{vmatrix} \] ### Step 2: Multiply each row by the logarithm of the respective base To simplify the determinant, we can multiply each row by the logarithm of the base of the logarithms in that row: - Multiply the first row by \(\log x\) - Multiply the second row by \(\log y\) - Multiply the third row by \(\log z\) This gives us: \[ D = \begin{vmatrix} \log x & \log y & \log z \\ \log x & \log y & \log z \\ \log x & \log y & \log z \end{vmatrix} \] ### Step 3: Identify the rows Notice that all three rows are now identical. When a determinant has two or more identical rows, the value of the determinant is zero. ### Step 4: Conclude the result Thus, we conclude: \[ D = 0 \] ### Final Answer: The numerical value of the determinant is \(0\). ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE MAIN ARCHIVE|92 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

For positive numbers x, y and z, the numerical value of the determinant |[1,log_xy,log_xz],[log_yx,1,log_yz],[log_zx,log_zy,1]| is

for x,x,z gt 0 Prove that |{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0

For positive numbers x ,\ y\ a n d\ z the numerical value of the determinant |1(log)_x y(log)_x z(log)_y x1(log)_y z(log)_z x(log)_z y1| is- a. 0 b. logx y z c. "log"(x+y+z) d. logx\ logy\ logz

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

The value of the determinant |[log_a(x/y), log_a(y/z), log_a(z/x)], [log_b (y/z), log_b (z/x), log_b (x/y)], [log_c (z/x), log_c (x/y), log_c (y/z)]|

The value of x^("log"_(x) a xx "log"_(a)y xx "log"_(y) z) is

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

Sum of values of x and y satisfying log_(x)(log_(3)(log_(x)y))=0 and log_(y)27=1 is :

Prove that : log _ y^(x) . log _z^(y) . log _a^(z) = log _a ^(x)

Prove that the value of each the following determinants is zero: |[logx,logy,logz],[ log2x ,log2y ,log2z ],[log3x, log3y ,log3z]|

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. M=[{:(sin^(4)theta,-1-sin^(2)theta),(1+cos^(2)theta,cos^(4)theta):}]=a...

    Text Solution

    |

  2. Let M=[{:(0,1,a),(1,2,3),(3,b,1):}]and adj M =[{:(-1,,1,,-1),(8,,-6,,2...

    Text Solution

    |

  3. For positive numbers x, y and z, the numerical value of the determinan...

    Text Solution

    |

  4. The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| ...

    Text Solution

    |

  5. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  6. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  7. "Let "plambda^(4) + qlambda^(3) +rlambda^(2) + slambda +t =|{:(lambda^...

    Text Solution

    |

  8. Let K be a positive real number and A=[(2k-1,2sqrt(k),2sqrt(k)),(2sqrt...

    Text Solution

    |

  9. A system of equations lambdax +y +z =1,x+lambday+z=lambda, x + y + lam...

    Text Solution

    |

  10. Let M be a 3xx3 matrix satisfying M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1...

    Text Solution

    |

  11. Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1), and r, s in {1, 2, 3}. Let ...

    Text Solution

    |

  12. The total number of distinct x in R for which |{:(x,,x^(2),,...

    Text Solution

    |

  13. For a real number, alpha if the system [{:(,1,alpha,alpha^(2)),(,alp...

    Text Solution

    |

  14. Let P be a matrix of order 3xx3 such that all the entries in P a...

    Text Solution

    |

  15. Let a, b, and c be three real numbers satifying [(a, b, c)] [(1,9,7)...

    Text Solution

    |

  16. Let a, b, and c be three real numbers satifying [(a, b, c)] [(1,9,7)...

    Text Solution

    |

  17. Let omega be the solution of x^(3)-1=0 with "Im"(omega) gt 0. If a=2 w...

    Text Solution

    |

  18. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  19. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  20. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |