Home
Class 12
MATHS
For a real number, alpha if the system ...

For a real number, `alpha` if the system
`[{:(,1,alpha,alpha^(2)),(,alpha,1,alpha),(,alpha^(2),alpha,1):}] [{:(,x),(,y),(,z):}]=[{:(,1),(,-1),(,1):}]`
of linear equations has infinitely many solutions then `1+alpha+alpha^(2)`=

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given system of linear equations represented in matrix form. The system is given by: \[ \begin{pmatrix} 1 & \alpha & \alpha^2 \\ \alpha & 1 & \alpha \\ \alpha^2 & \alpha & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \] We need to find the condition under which this system has infinitely many solutions. This occurs when the determinant of the coefficient matrix is zero. ### Step 1: Calculate the Determinant of the Coefficient Matrix The determinant of the matrix \[ A = \begin{pmatrix} 1 & \alpha & \alpha^2 \\ \alpha & 1 & \alpha \\ \alpha^2 & \alpha & 1 \end{pmatrix} \] can be calculated using the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( a, b, c \) are the elements of the first row, and \( d, e, f, g, h, i \) are the elements of the second and third rows respectively. Substituting the values: \[ \text{det}(A) = 1(1 \cdot 1 - \alpha \cdot \alpha) - \alpha(\alpha \cdot 1 - \alpha^2 \cdot \alpha) + \alpha^2(\alpha \cdot \alpha - 1 \cdot \alpha^2) \] This simplifies to: \[ = 1(1 - \alpha^2) - \alpha(\alpha - \alpha^3) + \alpha^2(\alpha^2 - \alpha^2) \] \[ = 1 - \alpha^2 - \alpha^2 + \alpha^4 \] \[ = \alpha^4 - 2\alpha^2 + 1 \] ### Step 2: Set the Determinant to Zero For the system to have infinitely many solutions, we set the determinant equal to zero: \[ \alpha^4 - 2\alpha^2 + 1 = 0 \] ### Step 3: Factor the Polynomial This can be factored as: \[ (\alpha^2 - 1)^2 = 0 \] ### Step 4: Solve for Alpha From this, we find: \[ \alpha^2 - 1 = 0 \implies \alpha^2 = 1 \implies \alpha = \pm 1 \] ### Step 5: Calculate \( 1 + \alpha + \alpha^2 \) Now, we need to evaluate \( 1 + \alpha + \alpha^2 \) for both values of \( \alpha \): 1. For \( \alpha = 1 \): \[ 1 + 1 + 1^2 = 1 + 1 + 1 = 3 \] 2. For \( \alpha = -1 \): \[ 1 - 1 + (-1)^2 = 1 - 1 + 1 = 1 \] ### Conclusion Thus, the value of \( 1 + \alpha + \alpha^2 \) can be either 3 or 1 depending on the value of \( \alpha \). ### Final Answer The possible values of \( 1 + \alpha + \alpha^2 \) are \( 3 \) or \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    VMC MODULES ENGLISH|Exercise JEE MAIN ARCHIVE|92 Videos
  • JEE MAIN REVISON TEST-23

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • MOCK TEST 1

    VMC MODULES ENGLISH|Exercise PART III : MATHEMATICS (SECTION-2)|10 Videos

Similar Questions

Explore conceptually related problems

For a real number alpha, if the system [1alphaalpha^2alpha1alphaalpha^2alpha1][x y z]=[1-1 1] of linear equations, has infinitely many solutions, then 1+alpha+alpha^2=

Prove that |1alphaalpha^2alphaalpha^2 1alpha^2 1alpha|=-(1-alpha^3)^2dot

If alpha is a non-real cube root of -2 , then the value of |(1,2 alpha,1),(alpha^(2),1,3 alpha^(2)),(2,2 alpha,1)| , is

Find the coefficient of alpha^(6) in the product (1+alpha+alpha^(2))(1+alpha+alpha^(2))(1+alpha+alpha^(2)+alpha^(3)) (1+alpha)(1+alpha)(1+alpha) .

If alpha is a non-real fifth root of unity, then the value of 3^(|1+alpha+alpha^(2),alpha^(-2)-alpha^(-1)| , is

If alpha is nonreal and alpha= (1)^(1/5) then the find the value of 2^(|1+alpha+alpha^2+alpha^-2-alpha^-1|)

Let A(alpha)=[(cos alpha, 0,sin alpha),(0,1,0),(sin alpha, 0, cos alpha)] and [(x,y,z)]=[(0,1,0)] . If the system of equations has infinite solutions and sum of all the possible value of alpha in [0, 2pi] is kpi , then the value of k is equal to

If A= [(alpha,beta),(gamma,-alpha)] is such that A^(2)=1 , then

If alpha is an imaginary fifth root of unity, then log_(2)|1+alpha+alpha^(2)+alpha^(3)-1/alpha|=

If f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|, then

VMC MODULES ENGLISH-MATRICES AND DETERMINANTS -JEE ADVANCED ARCHIVE
  1. Let z=(-1+sqrt(3)i)/(2), where i=sqrt(-1), and r, s in {1, 2, 3}. Let ...

    Text Solution

    |

  2. The total number of distinct x in R for which |{:(x,,x^(2),,...

    Text Solution

    |

  3. For a real number, alpha if the system [{:(,1,alpha,alpha^(2)),(,alp...

    Text Solution

    |

  4. Let P be a matrix of order 3xx3 such that all the entries in P a...

    Text Solution

    |

  5. Let a, b, and c be three real numbers satifying [(a, b, c)] [(1,9,7)...

    Text Solution

    |

  6. Let a, b, and c be three real numbers satifying [(a, b, c)] [(1,9,7)...

    Text Solution

    |

  7. Let omega be the solution of x^(3)-1=0 with "Im"(omega) gt 0. If a=2 w...

    Text Solution

    |

  8. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  9. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  10. Let P be an odd prime number and T(p) be the following set of 2xx2 mat...

    Text Solution

    |

  11. If M is a 3xx3 matrix, where det M=1a n dM M^T=1,w h e r eI is an iden...

    Text Solution

    |

  12. Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positiv...

    Text Solution

    |

  13. Let a,b,c be real numbers with a^(2) +b^(2) +c^(2)=1. Then show tha...

    Text Solution

    |

  14. The value of the determinant |(sintheta, costheta, sin2theta) , (sin(t...

    Text Solution

    |

  15. Suppose f(x) is a function satisfying the following conditions: f(0)=...

    Text Solution

    |

  16. Find the value of the determinant |(bc,ca, ab),( p, q, r),(1, 1, 1)|,w...

    Text Solution

    |

  17. Let a >0,d >-0. Find the value of the determinant |1/a1/(a(a+d))1/((a+...

    Text Solution

    |

  18. For all values of A ,B ,Ca n dP ,Q ,R show that |"cos"(A-P)"cos"(A-Q)"...

    Text Solution

    |

  19. For a fixed positive integer n , if =|n !(n+1)!(n+2)!(n+1)!(n+2)!(n+3)...

    Text Solution

    |

  20. If a!=p ,b!=q ,c!=r and |[p, b, c ],[a, q, c ],[a ,b, r]|=0, then find...

    Text Solution

    |