Home
Class 12
PHYSICS
A charged capacitor of unknown capacitan...

A charged capacitor of unknown capacitance is connected in series with `100kOmega` resistance and an ideal ammeter. The initial current in the circuit is found to be 0.2mA and the current after 7 sec is found to be 0.1mA. The potential energy that was stored in the capacitor before it was connected in the circuit is ______mJ. [Take `log_(2)2=0.7`]

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we will follow the outlined process: ### Step 1: Understand the given information We have: - Initial current \( I_0 = 0.2 \, \text{mA} = 0.2 \times 10^{-3} \, \text{A} \) - Current after 7 seconds \( I = 0.1 \, \text{mA} = 0.1 \times 10^{-3} \, \text{A} \) - Resistance \( R = 100 \, \text{k}\Omega = 100 \times 10^{3} \, \Omega \) ### Step 2: Use Ohm's Law to find the initial voltage across the capacitor Using Ohm's Law, the initial current can be expressed as: \[ I_0 = \frac{V}{R} \] Rearranging gives: \[ V = I_0 \times R \] Substituting the values: \[ V = 0.2 \times 10^{-3} \, \text{A} \times 100 \times 10^{3} \, \Omega = 20 \, \text{V} \] ### Step 3: Determine the time constant and half-life The current in an RC circuit decays exponentially. The time constant \( \tau \) is given by: \[ \tau = R \times C \] The current after time \( t \) is given by: \[ I(t) = I_0 e^{-t/\tau} \] Given that the current reduces to half after a certain time, we can set up the equation: \[ 0.1 \, \text{mA} = 0.2 \, \text{mA} \cdot e^{-7/\tau} \] Dividing both sides by \( 0.2 \, \text{mA} \): \[ 0.5 = e^{-7/\tau} \] Taking the natural logarithm of both sides: \[ \ln(0.5) = -\frac{7}{\tau} \] Since \( \ln(0.5) = -\ln(2) \), we have: \[ -\ln(2) = -\frac{7}{\tau} \implies \tau = \frac{7}{\ln(2)} \] ### Step 4: Calculate the capacitance Using the relationship \( \tau = R \times C \): \[ C = \frac{\tau}{R} = \frac{7}{\ln(2) \times 100 \times 10^{3}} \] Using \( \ln(2) \approx 0.7 \): \[ C = \frac{7}{0.7 \times 100 \times 10^{3}} = \frac{7}{70 \times 10^{3}} = 100 \, \mu\text{F} \] ### Step 5: Calculate the potential energy stored in the capacitor The potential energy \( U \) stored in a capacitor is given by: \[ U = \frac{1}{2} C V^2 \] Substituting the values: \[ U = \frac{1}{2} \times 100 \times 10^{-6} \, \text{F} \times (20 \, \text{V})^2 \] Calculating: \[ U = \frac{1}{2} \times 100 \times 10^{-6} \times 400 = 20 \times 10^{-3} \, \text{J} = 20 \, \text{mJ} \] ### Final Answer The potential energy that was stored in the capacitor before it was connected in the circuit is **20 mJ**.

To solve the problem step-by-step, we will follow the outlined process: ### Step 1: Understand the given information We have: - Initial current \( I_0 = 0.2 \, \text{mA} = 0.2 \times 10^{-3} \, \text{A} \) - Current after 7 seconds \( I = 0.1 \, \text{mA} = 0.1 \times 10^{-3} \, \text{A} \) - Resistance \( R = 100 \, \text{k}\Omega = 100 \times 10^{3} \, \Omega \) ...
Promotional Banner

Topper's Solved these Questions

  • CAPACITORS

    VMC MODULES ENGLISH|Exercise LEVEL 2|40 Videos
  • CAPACITORS

    VMC MODULES ENGLISH|Exercise JEE Main (Archive) LEVEL-1|36 Videos
  • CAPACITORS

    VMC MODULES ENGLISH|Exercise LEVEL 0 (LONG ANSWER TYPE)|3 Videos
  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Impeccable|50 Videos
  • CURRENT ELECTRICITY

    VMC MODULES ENGLISH|Exercise IN-CHAPTER EXERCISE-F|10 Videos

Similar Questions

Explore conceptually related problems

An uncharged capacitor of capacitance C is connected with a battery of EMF V and a resistance R. The switch is closed at t=0 . The time instant at which the current in the circuit is (V)/(4R) is t=

A capacitor of capacitance 8.0(mu)F is connected to a bettery of emf 6.0V through a resistance of 24(Omega) .Find the current in the circuit (a)just after the connections are made and (b)one time constant after the connections are made.

A resistor and capacitor are connected to an ac supply of 200 V, 50 Hz in series. The current in the circuit is 2 A. If the power consumed in the circuit is 100 W then in the above question, the capacitive reactance in the circuit is

An uncharged capacitor of capacitance 100 mu F is connected to a battery of emf 20V at t = 0 through a resistance 10 Omega , then (i) the maximum rate at which energy is stored in the capacitor is :

An uncharged capacitor of capacitance 100 mu F is connected to a battery of emf 20V at t = 0 through a resistance 10 Omega , then (i) the maximum rate at which energy is stored in the capacitor is :

A capacitor of capacitance 2 mu F is connected in the tank circuit of an oscillator oscillating with a frequency of 1 kHz. If the current flowing in the circuit is 2 mA , the voltage across the capacitor will be

A capacitor of capacitance 10(mu)F is connected to a battery of emf 2V.It is found that it takes 50 ms for the charge on the capacitor to bacome 12.6(mu)C. find the resistance of the circuit.

If maximum energy is stored in capacitor at t = 0 then find the time after which current in the circuit will be maximum.

Two capacitors of capacitances 20 .0pF and 50.0pF are connected in series with a 6.00V bettery . Find (a )the potential difference across each capacitor and (b) the energy stored in each capacitor .

A battery of emf 2 V and internal resistance r is connected in series with a resistor of 10Omega through an ammeter of resistance 2Omega . The ammeter reads 50 mA. Draw the circuit diagram and calculate the value of r.

VMC MODULES ENGLISH-CAPACITORS-LEVEL 1 (MCQs)
  1. The energy of a charged capacitor is U. Another identical capacitor is...

    Text Solution

    |

  2. Two dielectric slabs of area of cross-section same as the area of the ...

    Text Solution

    |

  3. A parallel plate capacitor is made of two dielectric blocks in series....

    Text Solution

    |

  4. A capacitor of capacitance value 1 muF is charged to 30 V and the batt...

    Text Solution

    |

  5. The area of the plates of a capacitor is 50cm^(2) each and the separat...

    Text Solution

    |

  6. The electrostatic energy stored in a parallel-plate capacitor of capac...

    Text Solution

    |

  7. The separation between the plates of a parallel-plate capacitor of cap...

    Text Solution

    |

  8. Three uncharged capacitors are connected as shown in the figure. If po...

    Text Solution

    |

  9. The separation between the plates of a parallel-plate capacitor is 2 m...

    Text Solution

    |

  10. A capacitor of capacitance C is charged to a potential difference V(0)...

    Text Solution

    |

  11. A charged capacitor of unknown capacitance is connected in series with...

    Text Solution

    |

  12. Two capacitor of capacitance 2muF and 3muF respectively are charged to...

    Text Solution

    |

  13. A capacitor is charged so that it has a stored potential energy U and ...

    Text Solution

    |

  14. The charge on the 4muF capacitor at steady state is (in muC)

    Text Solution

    |

  15. A parallel plate capacitor has two layers of dielectrics as shown in f...

    Text Solution

    |

  16. A metal plate P is placed symmetrically between the plates A and B of ...

    Text Solution

    |

  17. Two capacitors of capacitances 3muF and 6muF are charged to a potentia...

    Text Solution

    |

  18. The equivalent capacitance between A and B will be

    Text Solution

    |

  19. The emf of the battery shown in figure is

    Text Solution

    |

  20. Figure shows a network of a capacitor and resistors. Find the charge o...

    Text Solution

    |