Home
Class 12
MATHS
If sum of middle terms is S in the expan...

If sum of middle terms is S in the expansion of `(2a-a^2/4)^9` then the value(s) of S is/are

A

`((63)/(32))a^(14)(8+a)`

B

`((63)/(32))a^(13)(8+a)`

C

`((63)/(32))a^(14)(8-a)`

D

`((63)/(32))a^(13)(8-a)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the middle terms in the expansion of \((2a - \frac{a^2}{4})^9\), we will follow these steps: ### Step-by-Step Solution: 1. **Identify the Terms**: The expression can be rewritten as \((2a + b)^n\) where \(b = -\frac{a^2}{4}\) and \(n = 9\). 2. **Determine the Number of Terms**: The number of terms in the expansion is \(n + 1 = 10\). Since \(n\) is odd, there will be two middle terms. 3. **Find the Middle Terms**: The middle terms are the 5th and 6th terms in the expansion. The general term \(T_k\) in the expansion of \((x + y)^n\) is given by: \[ T_k = \binom{n}{k-1} x^{n-(k-1)} y^{k-1} \] For our case, the middle terms are: - \(T_5\) (5th term) - \(T_6\) (6th term) 4. **Calculate \(T_5\)**: \[ T_5 = \binom{9}{4} (2a)^{9-4} \left(-\frac{a^2}{4}\right)^4 \] Simplifying this: \[ T_5 = \binom{9}{4} (2a)^5 \left(-\frac{a^2}{4}\right)^4 = \binom{9}{4} (2^5 a^5) \left(-\frac{a^8}{256}\right) \] \[ = \binom{9}{4} \cdot 32 a^5 \cdot \left(-\frac{a^8}{256}\right) = \binom{9}{4} \cdot \left(-\frac{32}{256}\right) a^{13} \] \[ = \binom{9}{4} \cdot \left(-\frac{1}{8}\right) a^{13} \] 5. **Calculate \(T_6\)**: \[ T_6 = \binom{9}{5} (2a)^{9-5} \left(-\frac{a^2}{4}\right)^5 \] Simplifying this: \[ T_6 = \binom{9}{5} (2a)^4 \left(-\frac{a^2}{4}\right)^5 = \binom{9}{5} (16 a^4) \left(-\frac{a^{10}}{1024}\right) \] \[ = \binom{9}{5} \cdot 16 a^4 \cdot \left(-\frac{a^{10}}{1024}\right) = \binom{9}{5} \cdot \left(-\frac{16}{1024}\right) a^{14} \] \[ = \binom{9}{5} \cdot \left(-\frac{1}{64}\right) a^{14} \] 6. **Sum of the Middle Terms**: Now, we sum \(T_5\) and \(T_6\): \[ S = T_5 + T_6 = \binom{9}{4} \cdot \left(-\frac{1}{8}\right) a^{13} + \binom{9}{5} \cdot \left(-\frac{1}{64}\right) a^{14} \] 7. **Calculate Binomial Coefficients**: \(\binom{9}{4} = 126\) and \(\binom{9}{5} = 126\) (since \(\binom{n}{r} = \binom{n}{n-r}\)): \[ S = 126 \cdot \left(-\frac{1}{8}\right) a^{13} + 126 \cdot \left(-\frac{1}{64}\right) a^{14} \] \[ = -\frac{126}{8} a^{13} - \frac{126}{64} a^{14} \] 8. **Final Simplification**: \[ S = -\frac{63}{4} a^{13} - \frac{63}{64} a^{14} \] ### Final Result: Thus, the sum of the middle terms \(S\) in the expansion of \((2a - \frac{a^2}{4})^9\) is: \[ S = -\frac{63}{4} a^{13} - \frac{63}{64} a^{14} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

Find the middle term in the expansion of : (2x-(x^2)/4)^9

Find the middle term in the expansion of (x + 2)^(6) .

Find the middle term in the expansion of : (2a x-b/(x^2))^(12)

Find the middle term (s) in the expansion of (4x^2 + 5x^3)^17

Find the middle term (s) in the expansion of (4a+(3)/(2)b)^(11)

Find the middle term(s) in the expansion of (x^(2)-(1)/(x))^(6) .

Find the middle term (s) in the expansion of ((3x)/(7) - 2y)^10

If the middle term in the expansion of (x/2+2)^8 is 1120, then find the sum of possible real values of x .

Find the middle term (s) in the expansion of (3x^2 + (5)/(x^3))^12

If the third term in the expansion of (1+x)^mi s-1/8x^2, then find the value of mdot

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 1
  1. The the term independent in the expansion of [(t^(-1)-1)x+(t^(-1)+1)^(...

    Text Solution

    |

  2. If sum of middle terms is S in the expansion of (2a-a^2/4)^9 then the...

    Text Solution

    |

  3. if the rth term in the expansion of (x/3-2/(x^2))^(10) contains x^4 t...

    Text Solution

    |

  4. If the fourth term in the expansion of (px+1/x)^n is independent of x,...

    Text Solution

    |

  5. If the coefficients of r^(th) and (r+1)^(th)terms in expansion of (3+7...

    Text Solution

    |

  6. Find the coefficient of x^(7) in the expansion of (ax^(2) + (1)/(bx...

    Text Solution

    |

  7. If 3 * ^(n1-n2)P2=^(n1+n2)P2=90 then the ordered pair (n1 ,n2) is

    Text Solution

    |

  8. In the expansion of (2-3x^3)^(20), if the ratio of 10^(th) term to 11^...

    Text Solution

    |

  9. The (p+2)^(th) term from the end in (x-1/x)^(2n+1) is :

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. The coefficient of the middle term in the binomial expansion in powers...

    Text Solution

    |

  12. The value of 4{ C1 +4. C2 +4^2 C3 + ... +4^(n-1)} is

    Text Solution

    |

  13. The coefficient of the term independent of x in the exampansion of ((x...

    Text Solution

    |

  14. Find the coefficient of x^5 in the expansion of (1+x^2)^5(1+x)^4.

    Text Solution

    |

  15. For natural numbers m, n if (1-y)^(m)(1+y)^(n) = 1+a(1)y+a(2)y^(2) + "...

    Text Solution

    |

  16. The term independent of x in (1+x)^m (1+1/x)^n is

    Text Solution

    |

  17. Find the number of nonzero terms in the expansion of (1+3sqrt(2)x)^9+(...

    Text Solution

    |

  18. Find the coefficient of x^(20) in (x^2+2+1/(x^2))^(-5)(1+x^2)^(40)dot

    Text Solution

    |

  19. If x^m occurs in the expansion (x+1//x^2)^(2n) , then the coefficient ...

    Text Solution

    |

  20. Find the coefficient of x^5 in the expansion of (1+x)^(21)+(1+x)^(22)+...

    Text Solution

    |