Home
Class 12
MATHS
If 3 * ^(n1-n2)P2=^(n1+n2)P2=90 then th...

If `3 * ^(n_1-n_2)P_2=^(n_1+n_2)P_2=90` then the ordered pair `(n_1 ,n_2)` is

A

(8,2)

B

(7,3)

C

(16,8)

D

(9,1)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( 3 \cdot P(n_1 - n_2, 2) = 90 \) 2. \( P(n_1 + n_2, 2) = 90 \) Where \( P(n, r) \) represents the number of permutations of \( n \) items taken \( r \) at a time, given by the formula: \[ P(n, r) = \frac{n!}{(n - r)!} \] ### Step 1: Rewrite the equations using the permutation formula From the first equation: \[ 3 \cdot P(n_1 - n_2, 2) = 90 \] Using the permutation formula: \[ P(n_1 - n_2, 2) = \frac{(n_1 - n_2)!}{(n_1 - n_2 - 2)!} = (n_1 - n_2)(n_1 - n_2 - 1) \] Thus, we can rewrite the first equation as: \[ 3 \cdot (n_1 - n_2)(n_1 - n_2 - 1) = 90 \] Dividing both sides by 3: \[ (n_1 - n_2)(n_1 - n_2 - 1) = 30 \quad \text{(Equation 1)} \] From the second equation: \[ P(n_1 + n_2, 2) = 90 \] Using the permutation formula: \[ (n_1 + n_2)(n_1 + n_2 - 1) = 90 \quad \text{(Equation 2)} \] ### Step 2: Solve Equation 1 Let \( x = n_1 - n_2 \). Then, we have: \[ x(x - 1) = 30 \] This simplifies to: \[ x^2 - x - 30 = 0 \] Now, we can factor this quadratic equation: \[ (x - 6)(x + 5) = 0 \] Thus, \( x = 6 \) or \( x = -5 \). Since \( n_1 - n_2 \) must be non-negative, we take: \[ n_1 - n_2 = 6 \quad \text{(Equation 3)} \] ### Step 3: Solve Equation 2 Now, substituting \( n_1 + n_2 \) into Equation 2: Let \( y = n_1 + n_2 \). Then we have: \[ y(y - 1) = 90 \] This simplifies to: \[ y^2 - y - 90 = 0 \] Factoring this quadratic equation: \[ (y - 10)(y + 9) = 0 \] Thus, \( y = 10 \) or \( y = -9 \). Again, since \( n_1 + n_2 \) must be non-negative, we take: \[ n_1 + n_2 = 10 \quad \text{(Equation 4)} \] ### Step 4: Solve the system of equations Now we have two equations: 1. \( n_1 - n_2 = 6 \) (Equation 3) 2. \( n_1 + n_2 = 10 \) (Equation 4) We can solve these equations simultaneously. Adding Equation 3 and Equation 4: \[ (n_1 - n_2) + (n_1 + n_2) = 6 + 10 \] This simplifies to: \[ 2n_1 = 16 \] Thus: \[ n_1 = 8 \] Now substituting \( n_1 = 8 \) back into Equation 4: \[ 8 + n_2 = 10 \] So: \[ n_2 = 2 \] ### Final Answer The ordered pair \( (n_1, n_2) \) is \( (8, 2) \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of n .

For positive integer n_1,n_2 the value of the expression (1+i)^(n1) +(1+i^3)^(n1) (1+i^5)^(n2) (1+i^7)^(n_20), where i=sqrt-1, is a real number if and only if (a) n_1=n_2+1 (b) n_1=n_2-1 (c) n_1=n_2 (d) n_1 > 0, n_2 > 0

Find n if : "" ^(2n)P_(n+1) : ""^(2n-2) P_n = 56 : 3

if .^(2n+1)P_(n-1):^(2n-1)P_(n)=7:10 , then .^(n)P_(3) equals

Let P(n): (2n+1) lt 2^(n) , then the smallest positive integer for which P(n) is true?

Show that ""^(n)P_(n)=2""^(n)P_(n-2)

Find n if : ""^(2n+1) P_(n-1) : ""^(2n-1) P_n = 3: 5

If ""^(2n-1)P_(n): ""^(2n+1)P_(n-1)=22:7 , find n.

If "^(n+5)P_(n+1) = (11(n-1))/2"^(n+3)P_n , find ndot

If S_1 ,S_2 and S_3 denote the sum of first n_1,n_2 and n_3 terms respectively of an A.P. Then S_1/n_1 (n_2-n_3) + S_2/n_2 (n_3-n_1)+S_3/n_3 (n_1-n_2) equals :

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 1
  1. If the coefficients of r^(th) and (r+1)^(th)terms in expansion of (3+7...

    Text Solution

    |

  2. Find the coefficient of x^(7) in the expansion of (ax^(2) + (1)/(bx...

    Text Solution

    |

  3. If 3 * ^(n1-n2)P2=^(n1+n2)P2=90 then the ordered pair (n1 ,n2) is

    Text Solution

    |

  4. In the expansion of (2-3x^3)^(20), if the ratio of 10^(th) term to 11^...

    Text Solution

    |

  5. The (p+2)^(th) term from the end in (x-1/x)^(2n+1) is :

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. The coefficient of the middle term in the binomial expansion in powers...

    Text Solution

    |

  8. The value of 4{ C1 +4. C2 +4^2 C3 + ... +4^(n-1)} is

    Text Solution

    |

  9. The coefficient of the term independent of x in the exampansion of ((x...

    Text Solution

    |

  10. Find the coefficient of x^5 in the expansion of (1+x^2)^5(1+x)^4.

    Text Solution

    |

  11. For natural numbers m, n if (1-y)^(m)(1+y)^(n) = 1+a(1)y+a(2)y^(2) + "...

    Text Solution

    |

  12. The term independent of x in (1+x)^m (1+1/x)^n is

    Text Solution

    |

  13. Find the number of nonzero terms in the expansion of (1+3sqrt(2)x)^9+(...

    Text Solution

    |

  14. Find the coefficient of x^(20) in (x^2+2+1/(x^2))^(-5)(1+x^2)^(40)dot

    Text Solution

    |

  15. If x^m occurs in the expansion (x+1//x^2)^(2n) , then the coefficient ...

    Text Solution

    |

  16. Find the coefficient of x^5 in the expansion of (1+x)^(21)+(1+x)^(22)+...

    Text Solution

    |

  17. If n > 1 is an integer and x!=0, then (1 +x)^n-nx-1 is divisible by

    Text Solution

    |

  18. The coefficient of x^5 in the expansion of (x^2-x-2)^5 is -83 b. -82 c...

    Text Solution

    |

  19. The numberof integral termsin the expansion of ( (3)-root(8)(5))^256 i...

    Text Solution

    |

  20. Find the coefficient of x^(13) in the expansion of (1-x)^5xx(1+x+x^2+x...

    Text Solution

    |