Home
Class 12
MATHS
The value of 4{ C1 +4. C2 +4^2 C3 + ... ...

The value of `4{ C_1 +4. C_2 +4^2 C_3 + ... +4^(n-1)}` is

A

0

B

`5^(n)+1`

C

`5^(n)`

D

`5^(n)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 4C_1 + 4C_2 + 4^2C_3 + \ldots + 4^{n-1} \), we will follow these steps: ### Step 1: Rewrite the expression We can rewrite the expression as: \[ \sum_{k=1}^{n} 4^{k-1} C_k \] where \( C_k \) represents the binomial coefficient \( nCk \). ### Step 2: Recognize the binomial expansion We know from the Binomial Theorem that: \[ (a + b)^n = \sum_{k=0}^{n} C_k a^{n-k} b^k \] For our case, let \( a = 4 \) and \( b = 1 \). Thus, we can write: \[ (4 + 1)^n = 5^n = \sum_{k=0}^{n} C_k 4^{n-k} 1^k \] ### Step 3: Separate the terms From the expansion, we can separate the \( k=0 \) term: \[ 5^n = C_0 4^n + \sum_{k=1}^{n} C_k 4^{n-k} \] Here, \( C_0 = 1 \), so we have: \[ 5^n = 4^n + \sum_{k=1}^{n} C_k 4^{n-k} \] ### Step 4: Rearranging the equation Rearranging gives us: \[ \sum_{k=1}^{n} C_k 4^{n-k} = 5^n - 4^n \] ### Step 5: Change the index of summation Now, we can change the index of summation to match our original expression: \[ \sum_{k=1}^{n} C_k 4^{n-k} = \sum_{j=0}^{n-1} C_{j+1} 4^{n-(j+1)} = \sum_{j=0}^{n-1} C_{j+1} 4^{n-1-j} \] This is equivalent to: \[ \sum_{j=0}^{n-1} C_{j+1} 4^{j} = 4C_1 + 4^2C_2 + \ldots + 4^{n-1}C_n \] ### Step 6: Final expression Thus, we can conclude that: \[ 4C_1 + 4^2C_2 + \ldots + 4^{n-1}C_n = 5^n - 4^n \] ### Step 7: Conclusion The final value of the expression \( 4C_1 + 4C_2 + 4^2C_3 + \ldots + 4^{n-1} \) is: \[ 5^n - 4^n \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

Find the value of 4C_1 - 2C_2

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + C_(3) x^(3) + C_(4) x^(4) + ..., find the values of (i) C_(0) - C_(2) + C_(4) - C_(0) + … (ii) C_(1) - C_(3) + C_(5) - C_(7) + … (iii) C_(0) + C_(3) + C_(6) + …

The value of |[1, 1 ,1],[\ ^n C_1,\ ^(n+2)C_1,\ ^(n+4)C_1],[\ ^n C_2,\ ^(n+2)C_2,\ ^(n+4)C_2]| is (a) 2 (b) 4 (c) 8 (d) n^2

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

The value of |1 1 1^n C_1^(n+2)C_1^(n+4)C_1^n C_2^(n+2)C_2^(n+4)C_2| is

Prove that C_3 + 2.C_4+ 3.C_5 + ……..+ (n-2).C_n = (n-4).2^(n-1) + (n+2) where n > 3

3. C_0 + 7. C_1 + 11. C_2 +…...+ (4n+3) . C_n=

Prove that C_0 + 2.C_1 + 4.C_2 + 8.C_3 + ……+2^n.C_n = 3^n

Find the value of ^(4n)C_0+^(4n)C_4+^(4n)C_8+….+^(4n)C_(4n)

With usual notations prove that C_0 + 3.C_1 + 3^2.C_2 + ………..+3^n .C_n = 4^n

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 1
  1. about to only mathematics

    Text Solution

    |

  2. The coefficient of the middle term in the binomial expansion in powers...

    Text Solution

    |

  3. The value of 4{ C1 +4. C2 +4^2 C3 + ... +4^(n-1)} is

    Text Solution

    |

  4. The coefficient of the term independent of x in the exampansion of ((x...

    Text Solution

    |

  5. Find the coefficient of x^5 in the expansion of (1+x^2)^5(1+x)^4.

    Text Solution

    |

  6. For natural numbers m, n if (1-y)^(m)(1+y)^(n) = 1+a(1)y+a(2)y^(2) + "...

    Text Solution

    |

  7. The term independent of x in (1+x)^m (1+1/x)^n is

    Text Solution

    |

  8. Find the number of nonzero terms in the expansion of (1+3sqrt(2)x)^9+(...

    Text Solution

    |

  9. Find the coefficient of x^(20) in (x^2+2+1/(x^2))^(-5)(1+x^2)^(40)dot

    Text Solution

    |

  10. If x^m occurs in the expansion (x+1//x^2)^(2n) , then the coefficient ...

    Text Solution

    |

  11. Find the coefficient of x^5 in the expansion of (1+x)^(21)+(1+x)^(22)+...

    Text Solution

    |

  12. If n > 1 is an integer and x!=0, then (1 +x)^n-nx-1 is divisible by

    Text Solution

    |

  13. The coefficient of x^5 in the expansion of (x^2-x-2)^5 is -83 b. -82 c...

    Text Solution

    |

  14. The numberof integral termsin the expansion of ( (3)-root(8)(5))^256 i...

    Text Solution

    |

  15. Find the coefficient of x^(13) in the expansion of (1-x)^5xx(1+x+x^2+x...

    Text Solution

    |

  16. If the term independent of x in the (sqrt(x)-k/(x^2))^(10) is 405, the...

    Text Solution

    |

  17. Find the positive integer just greater than (1+0. 0001)^(10000)dot

    Text Solution

    |

  18. The term independent of a in the expansion of (1+sqrt(a)+1/(sqrt(a)-1)...

    Text Solution

    |

  19. The coefficient of x^(53) in the expansion sum(m=0)^(100)^(100)Cm(x-3)...

    Text Solution

    |

  20. In the binomial expansion of (a - b)^n , n ge 5 the sum of the 5th ...

    Text Solution

    |