Home
Class 12
MATHS
The value of sum(i=0)^(n)""^(n-i)C(r),ri...

The value of `sum_(i=0)^(n)""^(n-i)C_(r),rin[1,n]capsquare` is equal to :

A

`""^(n+1)C_(r)`

B

`""^(n)C_(r)`

C

`""^(n)C_(r+1)`

D

`""^(n+1)C_(r+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation \( \sum_{i=0}^{n} \binom{n-i}{r} \) where \( r \) is in the range [1, n]. ### Step-by-step Solution: 1. **Understanding the Summation**: The summation can be rewritten by changing the index of summation. Let \( j = n - i \). Then when \( i = 0 \), \( j = n \) and when \( i = n \), \( j = 0 \). Therefore, we can rewrite the summation as: \[ \sum_{i=0}^{n} \binom{n-i}{r} = \sum_{j=0}^{n} \binom{j}{r} \] 2. **Using the Hockey Stick Identity**: The Hockey Stick Identity in combinatorics states that: \[ \sum_{k=r}^{n} \binom{k}{r} = \binom{n+1}{r+1} \] In our case, we need to adjust the limits of the summation. Notice that the summation \( \sum_{j=0}^{n} \binom{j}{r} \) can be expressed as: \[ \sum_{j=r}^{n} \binom{j}{r} + \sum_{j=0}^{r-1} \binom{j}{r} \] The second term \( \sum_{j=0}^{r-1} \binom{j}{r} \) is zero because \( \binom{j}{r} = 0 \) for \( j < r \). 3. **Applying the Hockey Stick Identity**: Therefore, we can apply the Hockey Stick Identity directly: \[ \sum_{j=r}^{n} \binom{j}{r} = \binom{n+1}{r+1} \] 4. **Final Result**: Thus, we conclude that: \[ \sum_{i=0}^{n} \binom{n-i}{r} = \binom{n+1}{r+1} \] ### Conclusion: The value of \( \sum_{i=0}^{n} \binom{n-i}{r} \) is equal to \( \binom{n+1}{r+1} \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

The value of sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r is

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

The sum of the series sum_(r=0) ^(n) ""^(2n)C_(r), is

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to (a) 4^(n)-3^(n)+1 (b) 4^(n)-3^(n)-1 (c) 4^(n)-3^(n)+2 (d) 4^(n)-3^(n)

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 1
  1. The greatest coefficient in the expansion of (1+x)^(2n) is

    Text Solution

    |

  2. If (1-x+x^2)^n=a0+a1x+a2x^2+ .........+a(2n)x^(2n),\ find the value o...

    Text Solution

    |

  3. The value of sum(i=0)^(n)""^(n-i)C(r),rin[1,n]capsquare is equal to :

    Text Solution

    |

  4. The value of (""^(47)C(4))/(""^(57)C(4))+sum(j=0)^(3)(""^(50-j)C(3))/(...

    Text Solution

    |

  5. If the 6th term in the expansion of(1/(x^(8/3))+x^2(log)(10)x)^8 is 56...

    Text Solution

    |

  6. Let Tn denote the number of triangles, which can be formed using th...

    Text Solution

    |

  7. (sum(r=0)^(10) ""^(10)C(r) ) (sum(r=0)^(10)(-1)^(m) (""^(10)C(m))/(2^(...

    Text Solution

    |

  8. The coefficient of x^n in (1+x)^(101)(1-x+x^2)^(100) is non zero, then...

    Text Solution

    |

  9. The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (n !)...

    Text Solution

    |

  10. If the coefficients of 2nd, 3rd and 4th terms in the expansion of (...

    Text Solution

    |

  11. If in the expansion of (1+x)^(n),a,,b,c are three consecutive coeffici...

    Text Solution

    |

  12. The coefficient of x in the expansion of (1+x)(1+2x)(1+3x)….(1+100x) i...

    Text Solution

    |

  13. If the coefficients of three consecutive terms in the expansion of (1 ...

    Text Solution

    |

  14. Find sum of sum(r=1)^n r . C (2n,r) (a) n*2^(2n-1) (b) 2^(2n-1) (c) 2^...

    Text Solution

    |

  15. In the expansion of (1+x)^(50), find the sum of coefficients of odd po...

    Text Solution

    |

  16. If (1+x) ^(15) =a(0) +a(1) x +a(2) x ^(2) +…+ a(15) x ^(15), then the ...

    Text Solution

    |

  17. If ( 1 + x - 2x^(2))^(20) = sum(r=0)^(40) a(r) x^(r) , then find ...

    Text Solution

    |

  18. ""^(n-2)C(r)+2""^(n-2)C(r-1)+""^(n-2)C(r-2) equals :

    Text Solution

    |

  19. ""^(15)C(8) + ""^(15)C(9) - ""^(15)C(6) - ""^(15)C(7) is equal to ………....

    Text Solution

    |

  20. If ""^(18)C(15)+2(""^(18)C(16))+""^(17)C(16)+1=""^(n)C(3), then n is e...

    Text Solution

    |