Home
Class 12
MATHS
The value of (""^(47)C(4))/(""^(57)C(4))...

The value of `(""^(47)C_(4))/(""^(57)C_(4))+sum_(j=0)^(3)(""^(50-j)C_(3))/(""^(57)C_(53))+sum_(j=0)^(5)""^((56-k)C_(53-k))/(""^(57)C_(4))` is :

A

0

B

2

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{{^{47}C_4}}{{^{57}C_4}} + \sum_{j=0}^{3} \frac{{^{50-j}C_3}}{{^{57}C_{53}}} + \sum_{k=0}^{5} \frac{{^{56-k}C_{53-k}}}{{^{57}C_4}}, \] let's break it down step by step. ### Step 1: Simplifying the first term The first term is \[ \frac{{^{47}C_4}}{{^{57}C_4}}. \] Using the property of combinations, we can express this as: \[ \frac{{^{47}C_4}}{{^{57}C_4}} = \frac{{^{47}C_4}}{{^{57}C_4}} = \frac{{^{47}C_4}}{{^{57}C_4}} = \frac{{^{47}C_4}}{{^{57}C_4}} = \frac{47!}{4!(47-4)!} \cdot \frac{(57-4)!}{57!}. \] This simplifies to: \[ \frac{47! \cdot (53)!}{4! \cdot 43! \cdot 57!} = \frac{1}{^{57}C_4} \cdot ^{50}C_3 + ^{49}C_3 + ^{48}C_3 + ^{47}C_3. \] ### Step 2: Simplifying the second term Now we look at the second term: \[ \sum_{j=0}^{3} \frac{{^{50-j}C_3}}{{^{57}C_{53}}}. \] This can be rewritten as: \[ \frac{1}{{^{57}C_{53}}} \left(^{50}C_3 + ^{49}C_3 + ^{48}C_3 + ^{47}C_3\right). \] ### Step 3: Simplifying the third term The third term is: \[ \sum_{k=0}^{5} \frac{{^{56-k}C_{53-k}}}{{^{57}C_4}}. \] This can be rewritten as: \[ \frac{1}{{^{57}C_4}} \left(^{56}C_{53} + ^{55}C_{52} + ^{54}C_{51} + ^{53}C_{50} + ^{52}C_{49} + ^{51}C_{48}\right). \] ### Step 4: Combining all terms Now we combine all the terms: \[ \frac{1}{{^{57}C_4}} \left(^{47}C_4 + ^{50}C_3 + ^{49}C_3 + ^{48}C_3 + ^{47}C_3 + ^{56}C_{53} + ^{55}C_{52} + ^{54}C_{51} + ^{53}C_{50} + ^{52}C_{49} + ^{51}C_{48}\right). \] ### Step 5: Using Hockey Stick Identity Using the hockey stick identity in combinatorics, we can simplify the sum of combinations: \[ ^{n}C_r + ^{n-1}C_r + ... + ^{r}C_r = ^{n+1}C_{r+1}. \] Applying this identity, we find that: \[ ^{50}C_3 + ^{49}C_3 + ^{48}C_3 + ^{47}C_3 = ^{51}C_4. \] And similarly for the other sums. ### Step 6: Final simplification Putting everything together, we find that: \[ \frac{1}{{^{57}C_4}} \cdot ^{56}C_4 = 1. \] Thus, the final value of the entire expression is: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

sum_(j=0)^(oo)(-3)^(-j)

Evaluate ^(47)C_(4)+sum_(j=0)^(3)""^(50-j)C_(3)+sum_(k=0)^(5) ""^(56-k)C_(53-k) .

The value of ((""^(50)C_(0))/(1)+(""^(50)C_(2))/(3)+(""^(50)C_(4))/(5)+….+(""^(50)C_(50))/(51)) is :

The value of ""^(50)C_(4)+sum_(r=1)^(6)""^(56-r)C_(3) , is

The value of sum_(r=0)^(3) ""^(8)C_(r)(""^(5)C_(r+1)-""^(4)C_(r)) is "_____" .

The value of the sum ""^(1000)C_(50) + ""^(999)C_(49) +""^(998)C_(48)+"…."""^(950)C_(0) is

sum_(r=0)^(4) (-1)^(r )""^(16)C_(r) is divisible by :

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Evaluate sum_(i=0)^(n)sum_(j=0)^(n) ""^(n)C_(j) *""^(j)C_(i), ile j .

Find the following sums : (i) sumsum_(inej) ""^(n)C_(i).""^(n)C_(j) , (ii) sumsum_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j) . (iii) sumsum_(0leiltjlen) ""^(n)C_(i).""^(n)C_(j) .

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 1
  1. If (1-x+x^2)^n=a0+a1x+a2x^2+ .........+a(2n)x^(2n),\ find the value o...

    Text Solution

    |

  2. The value of sum(i=0)^(n)""^(n-i)C(r),rin[1,n]capsquare is equal to :

    Text Solution

    |

  3. The value of (""^(47)C(4))/(""^(57)C(4))+sum(j=0)^(3)(""^(50-j)C(3))/(...

    Text Solution

    |

  4. If the 6th term in the expansion of(1/(x^(8/3))+x^2(log)(10)x)^8 is 56...

    Text Solution

    |

  5. Let Tn denote the number of triangles, which can be formed using th...

    Text Solution

    |

  6. (sum(r=0)^(10) ""^(10)C(r) ) (sum(r=0)^(10)(-1)^(m) (""^(10)C(m))/(2^(...

    Text Solution

    |

  7. The coefficient of x^n in (1+x)^(101)(1-x+x^2)^(100) is non zero, then...

    Text Solution

    |

  8. The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (n !)...

    Text Solution

    |

  9. If the coefficients of 2nd, 3rd and 4th terms in the expansion of (...

    Text Solution

    |

  10. If in the expansion of (1+x)^(n),a,,b,c are three consecutive coeffici...

    Text Solution

    |

  11. The coefficient of x in the expansion of (1+x)(1+2x)(1+3x)….(1+100x) i...

    Text Solution

    |

  12. If the coefficients of three consecutive terms in the expansion of (1 ...

    Text Solution

    |

  13. Find sum of sum(r=1)^n r . C (2n,r) (a) n*2^(2n-1) (b) 2^(2n-1) (c) 2^...

    Text Solution

    |

  14. In the expansion of (1+x)^(50), find the sum of coefficients of odd po...

    Text Solution

    |

  15. If (1+x) ^(15) =a(0) +a(1) x +a(2) x ^(2) +…+ a(15) x ^(15), then the ...

    Text Solution

    |

  16. If ( 1 + x - 2x^(2))^(20) = sum(r=0)^(40) a(r) x^(r) , then find ...

    Text Solution

    |

  17. ""^(n-2)C(r)+2""^(n-2)C(r-1)+""^(n-2)C(r-2) equals :

    Text Solution

    |

  18. ""^(15)C(8) + ""^(15)C(9) - ""^(15)C(6) - ""^(15)C(7) is equal to ………....

    Text Solution

    |

  19. If ""^(18)C(15)+2(""^(18)C(16))+""^(17)C(16)+1=""^(n)C(3), then n is e...

    Text Solution

    |

  20. Let (1 + x)^(n) = sum(r=0)^(n) a(r) x^(r) . Then ( a+ (a(1))/(a(0))...

    Text Solution

    |