Home
Class 12
MATHS
Find sum of sum(r=1)^n r . C (2n,r) (a) ...

Find sum of `sum_(r=1)^n r . C (2n,r)` (a) `n*2^(2n-1)` (b) `2^(2n-1)` (c) `2^(n-1)+1` (d) None of these

A

`n*2^(2n-1)`

B

`2^(2n-1)`

C

`2^(n-1)+1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum \( \sum_{r=1}^{n} r \cdot \binom{2n}{r} \), we can use properties of binomial coefficients and some algebraic manipulation. Here’s a step-by-step solution: ### Step 1: Rewrite the Sum We start with the expression: \[ S = \sum_{r=1}^{n} r \cdot \binom{2n}{r} \] ### Step 2: Use the Identity for \( r \cdot \binom{n}{r} \) We can use the identity: \[ r \cdot \binom{n}{r} = n \cdot \binom{n-1}{r-1} \] Applying this to our sum gives: \[ S = \sum_{r=1}^{n} r \cdot \binom{2n}{r} = \sum_{r=1}^{n} 2n \cdot \binom{2n-1}{r-1} \] This allows us to factor out \( 2n \): \[ S = 2n \sum_{r=1}^{n} \binom{2n-1}{r-1} \] ### Step 3: Change the Index of Summation Next, we change the index of summation. Let \( k = r - 1 \), then when \( r = 1 \), \( k = 0 \) and when \( r = n \), \( k = n - 1 \). Thus: \[ S = 2n \sum_{k=0}^{n-1} \binom{2n-1}{k} \] ### Step 4: Use the Binomial Theorem According to the binomial theorem, we know that: \[ \sum_{k=0}^{m} \binom{m}{k} = 2^m \] In our case, we have: \[ \sum_{k=0}^{2n-1} \binom{2n-1}{k} = 2^{2n-1} \] However, we only need the sum up to \( n-1 \). By symmetry of binomial coefficients: \[ \sum_{k=0}^{n-1} \binom{2n-1}{k} = \frac{1}{2} \sum_{k=0}^{2n-1} \binom{2n-1}{k} = \frac{1}{2} \cdot 2^{2n-1} = 2^{2n-2} \] ### Step 5: Substitute Back into the Expression for \( S \) Now substituting back into our expression for \( S \): \[ S = 2n \cdot 2^{2n-2} = n \cdot 2^{2n-1} \] ### Final Answer Thus, the sum \( S \) is: \[ \boxed{n \cdot 2^{2n-1}} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

Find the sum of sum_(r=1)^n(r^n C_r)/(^n C_(r-1) .

lim_(n to oo)sum_(r=1)^(n)cot^(-1)(r^(2)+3//4) is (a) 0 (b) tan^(-1)1 (c) tan^(-1)2 (d) None of these

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

If sum_(r=1)^n t_r= (n(n+1)(n+2))/3 then sum _(r=1)^oo 1/t_r= (A) -1 (B) 1 (C) 0 (D) none of these

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

The value of sum_(r=1)^(n+1)(sum_(k=1)^n "^k C_(r-1)) ( where r ,k ,n in N) is equal to a. 2^(n+1)-2 b. 2^(n+1)-1 c. 2^(n+1) d. none of these

Find the sum sum_(r=1)^n r/((r+1)!) where n!= 1xx2xx3....n .

The value of sum_(r=1)^n{(2r-1)a+1/(b^r)} is equal to (a) a n^2+(b^(n-1)-1)/(b^n(b-1)) . (b) a n^2+(b^(n)-1)/(b^n(b-1)) (c) a n^3+(b^(n-1)-1)/(b^n(b-1)) (d) none of these

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 1
  1. The coefficient of x in the expansion of (1+x)(1+2x)(1+3x)….(1+100x) i...

    Text Solution

    |

  2. If the coefficients of three consecutive terms in the expansion of (1 ...

    Text Solution

    |

  3. Find sum of sum(r=1)^n r . C (2n,r) (a) n*2^(2n-1) (b) 2^(2n-1) (c) 2^...

    Text Solution

    |

  4. In the expansion of (1+x)^(50), find the sum of coefficients of odd po...

    Text Solution

    |

  5. If (1+x) ^(15) =a(0) +a(1) x +a(2) x ^(2) +…+ a(15) x ^(15), then the ...

    Text Solution

    |

  6. If ( 1 + x - 2x^(2))^(20) = sum(r=0)^(40) a(r) x^(r) , then find ...

    Text Solution

    |

  7. ""^(n-2)C(r)+2""^(n-2)C(r-1)+""^(n-2)C(r-2) equals :

    Text Solution

    |

  8. ""^(15)C(8) + ""^(15)C(9) - ""^(15)C(6) - ""^(15)C(7) is equal to ………....

    Text Solution

    |

  9. If ""^(18)C(15)+2(""^(18)C(16))+""^(17)C(16)+1=""^(n)C(3), then n is e...

    Text Solution

    |

  10. Let (1 + x)^(n) = sum(r=0)^(n) a(r) x^(r) . Then ( a+ (a(1))/(a(0))...

    Text Solution

    |

  11. sum(r=0)^(n-1) (""^(n)C(r))/(""^(n)C(r) + ""^(n)C(r+1)) is equal to

    Text Solution

    |

  12. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  13. Statement - 1 sum(r=0)^(n) (r + 1) ""^(n)C(r) = (n+2)*2^(n-1) Stat...

    Text Solution

    |

  14. if n>=2, ""^(n+1)C(2)+2(""^(2)C(2)+""^(3)C(2)+""^(4)C(2)+....+""^(n)...

    Text Solution

    |

  15. In the coefficients of rth, (r+1)t h ,a n d(r+2)t h terms in the binom...

    Text Solution

    |

  16. If s(n)=sum(r=0)^(n)(1)/(.^(n)C(r))and t(n)=sum(r=0)^(n)(r)/(.^(n)C(r)...

    Text Solution

    |

  17. The sum ""^(20)C(0)+""^(20)C(1)+""^(20)C(2)+……+""^(20)C(10) is equal t...

    Text Solution

    |

  18. Find the coefficient of x^5 in (1+2x+3x^2...........)^(-3/2)

    Text Solution

    |

  19. The coefficient of x^2y^3 in the expansion of (1-x+y)^(20) is (20 !)/(...

    Text Solution

    |

  20. The coefficient of x^(10) in the expansion of (1+x^2-x^3)^8 is 476 b. ...

    Text Solution

    |