Home
Class 12
MATHS
If (1+x) ^(15) =a(0) +a(1) x +a(2) x ^(2...

If `(1+x) ^(15) =a_(0) +a_(1) x +a_(2) x ^(2) +…+ a_(15) x ^(15),` then the value of `sum_(r=1) ^(15) r . (a_(r))/(a _(r-1))` is-

A

110

B

115

C

120

D

135

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \sum_{r=1}^{15} r \cdot \frac{a_r}{a_{r-1}} \] where \( a_r = \binom{15}{r} \) and \( a_{r-1} = \binom{15}{r-1} \). ### Step-by-Step Solution: 1. **Identify the coefficients**: From the binomial expansion of \( (1+x)^{15} \), we know: \[ a_r = \binom{15}{r} \] and \[ a_{r-1} = \binom{15}{r-1} \] 2. **Express the ratio**: We can express the ratio \( \frac{a_r}{a_{r-1}} \): \[ \frac{a_r}{a_{r-1}} = \frac{\binom{15}{r}}{\binom{15}{r-1}} = \frac{15! / (r!(15-r)!)}{15! / ((r-1)!(15-r+1)!)} = \frac{(15-r+1)}{r} \] 3. **Substitute the ratio into the summation**: Now we substitute this back into our summation: \[ \sum_{r=1}^{15} r \cdot \frac{a_r}{a_{r-1}} = \sum_{r=1}^{15} r \cdot \frac{15-r+1}{r} \] This simplifies to: \[ \sum_{r=1}^{15} (15 - r + 1) = \sum_{r=1}^{15} (16 - r) \] 4. **Change the index of summation**: We can rewrite the summation: \[ \sum_{r=1}^{15} (16 - r) = \sum_{r=1}^{15} 16 - \sum_{r=1}^{15} r \] The first part is simply \( 16 \times 15 \) and the second part is the sum of the first 15 natural numbers. 5. **Calculate the sums**: - The sum of the first 15 natural numbers is given by: \[ \sum_{r=1}^{15} r = \frac{15 \cdot (15 + 1)}{2} = \frac{15 \cdot 16}{2} = 120 \] - Therefore, we have: \[ \sum_{r=1}^{15} (16 - r) = 16 \cdot 15 - 120 = 240 - 120 = 120 \] ### Final Answer: Thus, the value of \( \sum_{r=1}^{15} r \cdot \frac{a_r}{a_{r-1}} \) is: \[ \boxed{120} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

If (1+x+x^(2))^(3n+1)=a_(0)+a_(1)x+a_(2)x^(2)+…a_(6n+2)x^(6n+2) , then find the value of sum_(r=0)^(2n)(a_(3r)-(a_(3r+1)+a_(3r+2))/2) is______.

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

If (1+x+x^(2))^(25)=a_(0)+a_(1)x+a_(2)x^(2)+……………..a_(50)x^(50) then the value of a_(0)+a_(2)+a_(4)+…………+a_(50) is

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then find the value of a_(0) + a_(1) + a_(2) + "……" + a_(38) .

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then

If a_(1)=2 and a_(n)=2a_(n-1)+5 for ngt1 , the value of sum_(r=2)^(5)a_(r) is

(1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2) +......+a_(n)x^(n) then Find the sum of the series a_(0) +a_(2)+a_(4) +……

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 1
  1. Find sum of sum(r=1)^n r . C (2n,r) (a) n*2^(2n-1) (b) 2^(2n-1) (c) 2^...

    Text Solution

    |

  2. In the expansion of (1+x)^(50), find the sum of coefficients of odd po...

    Text Solution

    |

  3. If (1+x) ^(15) =a(0) +a(1) x +a(2) x ^(2) +…+ a(15) x ^(15), then the ...

    Text Solution

    |

  4. If ( 1 + x - 2x^(2))^(20) = sum(r=0)^(40) a(r) x^(r) , then find ...

    Text Solution

    |

  5. ""^(n-2)C(r)+2""^(n-2)C(r-1)+""^(n-2)C(r-2) equals :

    Text Solution

    |

  6. ""^(15)C(8) + ""^(15)C(9) - ""^(15)C(6) - ""^(15)C(7) is equal to ………....

    Text Solution

    |

  7. If ""^(18)C(15)+2(""^(18)C(16))+""^(17)C(16)+1=""^(n)C(3), then n is e...

    Text Solution

    |

  8. Let (1 + x)^(n) = sum(r=0)^(n) a(r) x^(r) . Then ( a+ (a(1))/(a(0))...

    Text Solution

    |

  9. sum(r=0)^(n-1) (""^(n)C(r))/(""^(n)C(r) + ""^(n)C(r+1)) is equal to

    Text Solution

    |

  10. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  11. Statement - 1 sum(r=0)^(n) (r + 1) ""^(n)C(r) = (n+2)*2^(n-1) Stat...

    Text Solution

    |

  12. if n>=2, ""^(n+1)C(2)+2(""^(2)C(2)+""^(3)C(2)+""^(4)C(2)+....+""^(n)...

    Text Solution

    |

  13. In the coefficients of rth, (r+1)t h ,a n d(r+2)t h terms in the binom...

    Text Solution

    |

  14. If s(n)=sum(r=0)^(n)(1)/(.^(n)C(r))and t(n)=sum(r=0)^(n)(r)/(.^(n)C(r)...

    Text Solution

    |

  15. The sum ""^(20)C(0)+""^(20)C(1)+""^(20)C(2)+……+""^(20)C(10) is equal t...

    Text Solution

    |

  16. Find the coefficient of x^5 in (1+2x+3x^2...........)^(-3/2)

    Text Solution

    |

  17. The coefficient of x^2y^3 in the expansion of (1-x+y)^(20) is (20 !)/(...

    Text Solution

    |

  18. The coefficient of x^(10) in the expansion of (1+x^2-x^3)^8 is 476 b. ...

    Text Solution

    |

  19. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  20. If ak is the coefficient of x^k in the expansion of (1+x+x^2)^n for k ...

    Text Solution

    |