Home
Class 12
MATHS
""^(n-2)C(r)+2""^(n-2)C(r-1)+""^(n-2)C(r...

`""^(n-2)C_(r)+2""^(n-2)C_(r-1)+""^(n-2)C_(r-2)` equals :

A

`""^(n+1)C_(r)`

B

`""^(n)C_(r)`

C

`""^(n)C_(r+1)`

D

`""^(n-1)C_(r)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \binom{n-2}{r} + 2 \binom{n-2}{r-1} + \binom{n-2}{r-2} \), we can use the properties of binomial coefficients. ### Step-by-Step Solution: 1. **Write down the expression**: \[ \binom{n-2}{r} + 2 \binom{n-2}{r-1} + \binom{n-2}{r-2} \] 2. **Use the identity for binomial coefficients**: We know that: \[ \binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1} \] We can apply this identity to the terms in our expression. 3. **Rearranging the expression**: Notice that we can express \( \binom{n-2}{r} \) and \( \binom{n-2}{r-2} \) in terms of \( \binom{n-1}{r} \) and \( \binom{n-1}{r-1} \): \[ \binom{n-2}{r} = \binom{n-1}{r} - \binom{n-1}{r-1} \] \[ \binom{n-2}{r-1} = \binom{n-1}{r-1} - \binom{n-1}{r-2} \] \[ \binom{n-2}{r-2} = \binom{n-1}{r-2} \] 4. **Substituting back into the expression**: Substitute these identities back into the original expression: \[ \left( \binom{n-1}{r} - \binom{n-1}{r-1} \right) + 2 \left( \binom{n-1}{r-1} - \binom{n-1}{r-2} \right) + \binom{n-1}{r-2} \] 5. **Combine like terms**: Simplifying the expression: \[ \binom{n-1}{r} - \binom{n-1}{r-1} + 2\binom{n-1}{r-1} - 2\binom{n-1}{r-2} + \binom{n-1}{r-2} \] This simplifies to: \[ \binom{n-1}{r} + \binom{n-1}{r-1} - \binom{n-1}{r-2} \] 6. **Use the identity again**: Now, we can apply the binomial coefficient identity again: \[ \binom{n-1}{r} + \binom{n-1}{r-1} = \binom{n}{r} \] 7. **Final Result**: Therefore, the final result is: \[ \binom{n}{r} \] ### Conclusion: The expression \( \binom{n-2}{r} + 2 \binom{n-2}{r-1} + \binom{n-2}{r-2} \) equals \( \binom{n}{r} \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to

For ""^(n) C_(r) + 2 ""^(n) C_(r-1) + ""^(n) C_(r-2) =

If ""^(n)C _r denotes the numbers of combinations of n things taken r at a time, then the expression ""^(n) C_(r+1) +""^(n)C_(r-1) +2 xx ""^(n)C_r equals

If ""^(n)C _r denots the numbers of combinations of n things taken r at a time, then the expression ""^(n) C_(r+1) +""^(n)C_(r-1) +2 xx ""^(n)C_r equals ""^(n+2) C_(r+1)

If ""^(n)C _r denots the numbers of combinations of n things taken r at a time, then the expression ""^(n) C_(r+1) +""^(n)C_(r-1) +2 xx ""^(n)C_r equals ""^(n+2) C _(r+1)

If ""^(n)C _4 denots the numbers of combinations of n things taken r at a time, then the expression ""^(n) C_(r+1) +""^(n)C_(r-1) +2 xx ""^(n)C_r equals ""^(n+2)C_(r+1)

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

the value of Sigma_(r=2)^(n) (-2)^(r ) |{:( ""^(n-2)C_(r-2),,""^(n-2)C_(r-1),,""^(n-2)C_(r)),(-3,,1 ,,1),(2,,-1,,0):}| (n gt 2)

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 1
  1. If (1+x) ^(15) =a(0) +a(1) x +a(2) x ^(2) +…+ a(15) x ^(15), then the ...

    Text Solution

    |

  2. If ( 1 + x - 2x^(2))^(20) = sum(r=0)^(40) a(r) x^(r) , then find ...

    Text Solution

    |

  3. ""^(n-2)C(r)+2""^(n-2)C(r-1)+""^(n-2)C(r-2) equals :

    Text Solution

    |

  4. ""^(15)C(8) + ""^(15)C(9) - ""^(15)C(6) - ""^(15)C(7) is equal to ………....

    Text Solution

    |

  5. If ""^(18)C(15)+2(""^(18)C(16))+""^(17)C(16)+1=""^(n)C(3), then n is e...

    Text Solution

    |

  6. Let (1 + x)^(n) = sum(r=0)^(n) a(r) x^(r) . Then ( a+ (a(1))/(a(0))...

    Text Solution

    |

  7. sum(r=0)^(n-1) (""^(n)C(r))/(""^(n)C(r) + ""^(n)C(r+1)) is equal to

    Text Solution

    |

  8. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  9. Statement - 1 sum(r=0)^(n) (r + 1) ""^(n)C(r) = (n+2)*2^(n-1) Stat...

    Text Solution

    |

  10. if n>=2, ""^(n+1)C(2)+2(""^(2)C(2)+""^(3)C(2)+""^(4)C(2)+....+""^(n)...

    Text Solution

    |

  11. In the coefficients of rth, (r+1)t h ,a n d(r+2)t h terms in the binom...

    Text Solution

    |

  12. If s(n)=sum(r=0)^(n)(1)/(.^(n)C(r))and t(n)=sum(r=0)^(n)(r)/(.^(n)C(r)...

    Text Solution

    |

  13. The sum ""^(20)C(0)+""^(20)C(1)+""^(20)C(2)+……+""^(20)C(10) is equal t...

    Text Solution

    |

  14. Find the coefficient of x^5 in (1+2x+3x^2...........)^(-3/2)

    Text Solution

    |

  15. The coefficient of x^2y^3 in the expansion of (1-x+y)^(20) is (20 !)/(...

    Text Solution

    |

  16. The coefficient of x^(10) in the expansion of (1+x^2-x^3)^8 is 476 b. ...

    Text Solution

    |

  17. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  18. If ak is the coefficient of x^k in the expansion of (1+x+x^2)^n for k ...

    Text Solution

    |

  19. The coefficient of x^(28) in the expansion of (1+x^3-x^6)^(30) is 1 b....

    Text Solution

    |

  20. The coefficient of x^(n) in the polynomial (x+.^(n)C(0))(x+3.^(n)C(1))...

    Text Solution

    |