Home
Class 12
MATHS
If ""^(18)C(15)+2(""^(18)C(16))+""^(17)C...

If `""^(18)C_(15)+2(""^(18)C_(16))+""^(17)C_(16)+1=""^(n)C_(3)`, then n is equal to :

A

19

B

20

C

18

D

24

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \binom{18}{15} + 2 \binom{18}{16} + \binom{17}{16} + 1 = \binom{n}{3} \), we will simplify the left-hand side step by step. ### Step 1: Simplify the Left-Hand Side We start with the left-hand side: \[ \binom{18}{15} + 2 \binom{18}{16} + \binom{17}{16} + 1 \] ### Step 2: Use Binomial Coefficient Properties We can use the property of binomial coefficients that states: \[ \binom{n}{k} = \binom{n}{n-k} \] Thus, we can rewrite: \[ \binom{18}{15} = \binom{18}{3} \quad \text{and} \quad \binom{18}{16} = \binom{18}{2} \quad \text{and} \quad \binom{17}{16} = \binom{17}{1} \] ### Step 3: Substitute the Values Now substituting these into the equation: \[ \binom{18}{3} + 2 \binom{18}{2} + \binom{17}{1} + 1 \] ### Step 4: Calculate Each Binomial Coefficient Now we compute each binomial coefficient: 1. \(\binom{18}{3} = \frac{18 \times 17 \times 16}{3 \times 2 \times 1} = 816\) 2. \(\binom{18}{2} = \frac{18 \times 17}{2 \times 1} = 153\) 3. \(\binom{17}{1} = 17\) ### Step 5: Substitute Back into the Equation Now substituting these values back into the equation: \[ 816 + 2 \times 153 + 17 + 1 \] Calculating \(2 \times 153 = 306\): \[ 816 + 306 + 17 + 1 = 1140 \] ### Step 6: Set the Left-Hand Side Equal to the Right-Hand Side Now we have: \[ 1140 = \binom{n}{3} \] ### Step 7: Solve for \(n\) To find \(n\), we need to solve: \[ \binom{n}{3} = \frac{n(n-1)(n-2)}{6} = 1140 \] Multiplying both sides by 6: \[ n(n-1)(n-2) = 6840 \] ### Step 8: Find \(n\) We can test values for \(n\): - For \(n = 20\): \[ 20 \times 19 \times 18 = 6840 \] Thus, \(n = 20\) satisfies the equation. ### Final Answer Therefore, the value of \(n\) is: \[ \boxed{20} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

Find ""^(18)C_(3)+^(18)C_(2)

sum_(n=1)^(oo) (""^(n)C_(0) + ""^(n)C_(1) + .......""^(n)C_(n))/(n!) is equal to

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

If S=Sigma_(n=1)^(oo) (""^(n)C_(0)+""^(n)C_(1)+""^(n)c_(2)+..+""^(n)C_(n))/(""^(n)P_(n)) then S equals

If .^(n)C_(12) = .^(n)C_(16) , find the value of n

If sum_(r=0)^(n){("^(n)C_(r-1))/('^(n)C_(r )+^(n)C_(r-1))}^(3)=(25)/(24) , then n is equal to (a) 3 (b) 4 (c) 5 (d) 6

If ^18C_15+2 ^18C_16+^17C_16+1=^nC_3 , then n=

""^(n-2)C_(r)+2""^(n-2)C_(r-1)+""^(n-2)C_(r-2) equals :

The 13 th term in the expansion of (9x-1/(3sqrt(x)))^(18),x gt0 is (i) ""^(18)C_(12)x^(3) (ii) ""^(18)C_(12)x^(6) (iii) ""^(18)C_(12)1/(x^(6)) (iv) ""^(18)C_(12)

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 1
  1. ""^(n-2)C(r)+2""^(n-2)C(r-1)+""^(n-2)C(r-2) equals :

    Text Solution

    |

  2. ""^(15)C(8) + ""^(15)C(9) - ""^(15)C(6) - ""^(15)C(7) is equal to ………....

    Text Solution

    |

  3. If ""^(18)C(15)+2(""^(18)C(16))+""^(17)C(16)+1=""^(n)C(3), then n is e...

    Text Solution

    |

  4. Let (1 + x)^(n) = sum(r=0)^(n) a(r) x^(r) . Then ( a+ (a(1))/(a(0))...

    Text Solution

    |

  5. sum(r=0)^(n-1) (""^(n)C(r))/(""^(n)C(r) + ""^(n)C(r+1)) is equal to

    Text Solution

    |

  6. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  7. Statement - 1 sum(r=0)^(n) (r + 1) ""^(n)C(r) = (n+2)*2^(n-1) Stat...

    Text Solution

    |

  8. if n>=2, ""^(n+1)C(2)+2(""^(2)C(2)+""^(3)C(2)+""^(4)C(2)+....+""^(n)...

    Text Solution

    |

  9. In the coefficients of rth, (r+1)t h ,a n d(r+2)t h terms in the binom...

    Text Solution

    |

  10. If s(n)=sum(r=0)^(n)(1)/(.^(n)C(r))and t(n)=sum(r=0)^(n)(r)/(.^(n)C(r)...

    Text Solution

    |

  11. The sum ""^(20)C(0)+""^(20)C(1)+""^(20)C(2)+……+""^(20)C(10) is equal t...

    Text Solution

    |

  12. Find the coefficient of x^5 in (1+2x+3x^2...........)^(-3/2)

    Text Solution

    |

  13. The coefficient of x^2y^3 in the expansion of (1-x+y)^(20) is (20 !)/(...

    Text Solution

    |

  14. The coefficient of x^(10) in the expansion of (1+x^2-x^3)^8 is 476 b. ...

    Text Solution

    |

  15. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  16. If ak is the coefficient of x^k in the expansion of (1+x+x^2)^n for k ...

    Text Solution

    |

  17. The coefficient of x^(28) in the expansion of (1+x^3-x^6)^(30) is 1 b....

    Text Solution

    |

  18. The coefficient of x^(n) in the polynomial (x+.^(n)C(0))(x+3.^(n)C(1))...

    Text Solution

    |

  19. If (1+2x+x^2)^n=sum(r=0)^(2n)ar x^r ,then ar is a.(.^nC2)^2 b. .^n ...

    Text Solution

    |

  20. The value of sum(r=0)^nsum(s=0)^nsum(t=0)^nsum(u=0)^n(1) is

    Text Solution

    |