Home
Class 12
MATHS
Let (1 + x)^(n) = sum(r=0)^(n) a(r) x^(r...

Let `(1 + x)^(n) = sum_(r=0)^(n) a_(r) x^(r)` . Then
`( a+ (a_(1))/(a_(0))) (1 + (a_(2))/(a_(1)))…(1 + (a_(n))/(a_(n-1)))` is equal to

A

`(n+1)^(n+1)/(n!)`

B

`(n+1)^(n)/(n!)`

C

`n^(n-1)/((n-1)!)`

D

`(n+1)^(n+1)/((n-1)!)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (1 + \frac{a_1}{a_0})(1 + \frac{a_2}{a_1}) \cdots (1 + \frac{a_n}{a_{n-1}}) \] where \(a_r\) are the coefficients from the binomial expansion of \((1 + x)^n\). ### Step 1: Identify the coefficients \(a_r\) From the binomial theorem, we know that: \[ (1 + x)^n = \sum_{r=0}^{n} a_r x^r \] where \(a_r = \binom{n}{r}\). Thus, we have: - \(a_0 = \binom{n}{0} = 1\) - \(a_1 = \binom{n}{1} = n\) - \(a_2 = \binom{n}{2} = \frac{n(n-1)}{2}\) - \(\ldots\) - \(a_n = \binom{n}{n} = 1\) ### Step 2: Write the expression in terms of \(n\) Now, we can express each term in the product: \[ 1 + \frac{a_r}{a_{r-1}} = 1 + \frac{\binom{n}{r}}{\binom{n}{r-1}} = 1 + \frac{n - (r - 1)}{r} = 1 + \frac{n - r + 1}{r} \] ### Step 3: Simplify each term The term simplifies to: \[ 1 + \frac{n - r + 1}{r} = \frac{r + n - r + 1}{r} = \frac{n + 1}{r} \] ### Step 4: Write the full product Now we can write the full product: \[ \prod_{r=1}^{n} \left(1 + \frac{a_r}{a_{r-1}}\right) = \prod_{r=1}^{n} \frac{n + 1}{r} \] ### Step 5: Evaluate the product This can be simplified as: \[ = (n + 1)^n \prod_{r=1}^{n} \frac{1}{r} = \frac{(n + 1)^n}{n!} \] ### Final Result Thus, the final result is: \[ \frac{(n + 1)^n}{n!} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

Let (1 + x + x^(2))^(n) = sum_(r=0)^(2n) a_(r) x^(r) . If sum_(r=0)^(2n)(1)/(a_(r))= alpha , then sum_(r=0)^(2n) (r)/(a_(r)) =

(1+2x+3x^(2))^(15) = sum_(r=0)^(30) a_(r)x^(r) then digit at the unit place of a_(0) + a_(1) + a_(30) is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. The value of sum_(r=0)^(n-1) a_(r) is

If a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1 , then minimum value of (1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2)) is equal to

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is even, the value of sum_(r=0)^(n//2-1) a_(2r) is

If a_(a), a _(2), a _(3),…., a_(n) are in H.P. and f (k)=sum _(r =1) ^(n) a_(r)-a_(k) then (a_(1))/(f(1)), (a_(2))/(f (2)), (a_(3))/(f (n)) are in :

If a_(a), a _(2), a _(3),…., a_(n) are in H.P. and f (k)=sum _(r =1) ^(n) a_(r)-a_(k) then (a_(1))/(f(1)), (a_(2))/(f (2)), (a_(3))/(f (n)) are in :

Consider (1+x+x^(2)) ^(n) = sum _(r=0)^(2n) a_(r) x^(r) , "where " a_(0),a_(1), a_(2),…a_(2n) are real numbers and n is a positive integer. The value of a_(2) is

Let y = 1 + (a_(1))/(x - a_(1)) + (a_(2) x)/((x - a_(1))(x - a_(2))) + (a_(3) x^(2))/((x - a_(1))(x - a_(2))(x - a_(3))) + … (a_(n) x^(n - 1))/((x - a_(1))(x - a_(2))(x - a_(3))..(x - a_(n))) Find (dy)/(dx)

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 1
  1. ""^(15)C(8) + ""^(15)C(9) - ""^(15)C(6) - ""^(15)C(7) is equal to ………....

    Text Solution

    |

  2. If ""^(18)C(15)+2(""^(18)C(16))+""^(17)C(16)+1=""^(n)C(3), then n is e...

    Text Solution

    |

  3. Let (1 + x)^(n) = sum(r=0)^(n) a(r) x^(r) . Then ( a+ (a(1))/(a(0))...

    Text Solution

    |

  4. sum(r=0)^(n-1) (""^(n)C(r))/(""^(n)C(r) + ""^(n)C(r+1)) is equal to

    Text Solution

    |

  5. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  6. Statement - 1 sum(r=0)^(n) (r + 1) ""^(n)C(r) = (n+2)*2^(n-1) Stat...

    Text Solution

    |

  7. if n>=2, ""^(n+1)C(2)+2(""^(2)C(2)+""^(3)C(2)+""^(4)C(2)+....+""^(n)...

    Text Solution

    |

  8. In the coefficients of rth, (r+1)t h ,a n d(r+2)t h terms in the binom...

    Text Solution

    |

  9. If s(n)=sum(r=0)^(n)(1)/(.^(n)C(r))and t(n)=sum(r=0)^(n)(r)/(.^(n)C(r)...

    Text Solution

    |

  10. The sum ""^(20)C(0)+""^(20)C(1)+""^(20)C(2)+……+""^(20)C(10) is equal t...

    Text Solution

    |

  11. Find the coefficient of x^5 in (1+2x+3x^2...........)^(-3/2)

    Text Solution

    |

  12. The coefficient of x^2y^3 in the expansion of (1-x+y)^(20) is (20 !)/(...

    Text Solution

    |

  13. The coefficient of x^(10) in the expansion of (1+x^2-x^3)^8 is 476 b. ...

    Text Solution

    |

  14. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  15. If ak is the coefficient of x^k in the expansion of (1+x+x^2)^n for k ...

    Text Solution

    |

  16. The coefficient of x^(28) in the expansion of (1+x^3-x^6)^(30) is 1 b....

    Text Solution

    |

  17. The coefficient of x^(n) in the polynomial (x+.^(n)C(0))(x+3.^(n)C(1))...

    Text Solution

    |

  18. If (1+2x+x^2)^n=sum(r=0)^(2n)ar x^r ,then ar is a.(.^nC2)^2 b. .^n ...

    Text Solution

    |

  19. The value of sum(r=0)^nsum(s=0)^nsum(t=0)^nsum(u=0)^n(1) is

    Text Solution

    |

  20. If n is an even natural number , find the value of sum(r=0)^(n) ((...

    Text Solution

    |