Home
Class 12
MATHS
if n>=2, ""^(n+1)C(2)+2(""^(2)C(2)+""^...

if n>=2, `""^(n+1)C_(2)+2(""^(2)C_(2)+""^(3)C_(2)+""^(4)C_(2)+....+""^(n)C_(2))`Value is:-

A

`sumn`

B

`sumn^(2)`

C

`sumn^(3)`

D

`((n+1))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \binom{n+1}{2} + 2\left(\binom{2}{2} + \binom{3}{2} + \binom{4}{2} + \ldots + \binom{n}{2}\right) \] ### Step 1: Evaluate \(\binom{n+1}{2}\) The binomial coefficient \(\binom{n+1}{2}\) can be calculated using the formula: \[ \binom{n+1}{2} = \frac{(n+1)n}{2} \] ### Step 2: Evaluate the summation Next, we need to evaluate the summation: \[ \sum_{r=2}^{n} \binom{r}{2} \] Using the formula for the binomial coefficient, we have: \[ \binom{r}{2} = \frac{r(r-1)}{2} \] Thus, the summation becomes: \[ \sum_{r=2}^{n} \binom{r}{2} = \sum_{r=2}^{n} \frac{r(r-1)}{2} = \frac{1}{2} \sum_{r=2}^{n} r(r-1) \] ### Step 3: Simplifying the summation The term \(r(r-1)\) can be expressed as: \[ r(r-1) = r^2 - r \] So we can split the summation: \[ \sum_{r=2}^{n} r(r-1) = \sum_{r=2}^{n} r^2 - \sum_{r=2}^{n} r \] Using the formulas for the sums of squares and the sums of integers: 1. The sum of the first \(n\) squares is: \[ \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \] 2. The sum of the first \(n\) integers is: \[ \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \] Thus, we can calculate: \[ \sum_{r=2}^{n} r^2 = \sum_{r=1}^{n} r^2 - 1^2 = \frac{n(n+1)(2n+1)}{6} - 1 \] And: \[ \sum_{r=2}^{n} r = \sum_{r=1}^{n} r - 1 = \frac{n(n+1)}{2} - 1 \] ### Step 4: Combine the results Now substituting back into our expression: \[ \sum_{r=2}^{n} r(r-1) = \left(\frac{n(n+1)(2n+1)}{6} - 1\right) - \left(\frac{n(n+1)}{2} - 1\right) \] This simplifies to: \[ \sum_{r=2}^{n} r(r-1) = \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} + 1 \] ### Step 5: Final expression Now, substituting this back into our original expression: \[ \binom{n+1}{2} + 2\left(\frac{1}{2} \sum_{r=2}^{n} r(r-1)\right) = \frac{(n+1)n}{2} + \sum_{r=2}^{n} r(r-1) \] After simplification, we will arrive at: \[ \text{Final Value} = \frac{n(n+1)(2n+1)}{6} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)=

""^(n-2)C_(r)+2""^(n-2)C_(r-1)+""^(n-2)C_(r-2) equals :

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

Prove that (""^(2n)C_(0))^2-(""^(2n)C_(1))^2+(""^(2n)C_(2))^2-.....+(-1)^n(""^(2n)C_(2n))^2=(-1)^n.""^(2n)C_(n)

(.^(n)C_(0))^(2)+(.^(n)C_(1))^(2)+(.^(n)C_(2))^(2)+ . . .+(.^(n)C_(n))^(2) equals

The coefficient of x^(n) in the polynomial (x+""^(2n+1)C_(0))(X+""^(2n+1)C_(1)) (x+""^(2n+1)C_(2))……(X+""^(2n+1)C_(n)) is

The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

If the value of (n + 2) . ""^(n)C_(0) *2^(n+1) - (n+1) * ""^(n)C_(1)*2^(n) + n* ""^(n)C_(2) * 2^(n-1) -... is equal to k(n +1) , the value of k is .

Prove that: .^(2)C_(2)+^(3)C_(2)+^(4)C_(2)+…..+^(n+1)C_(2)=1/6n(n+1)(n+2)

((1 + ""^nC_1 + ""^nC_2 + ""^nC_3+…….+nC_n)^2)/(1 + ""^(2n)C_1 + ""^(2n)C_2 + ""^(2n)C_3 + ……… + ""^(2n)C_(2n)) =

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 1
  1. Find the coefficient of x^7 in the expansion of (1 - x -x^2 + x^3)^(6)...

    Text Solution

    |

  2. Statement - 1 sum(r=0)^(n) (r + 1) ""^(n)C(r) = (n+2)*2^(n-1) Stat...

    Text Solution

    |

  3. if n>=2, ""^(n+1)C(2)+2(""^(2)C(2)+""^(3)C(2)+""^(4)C(2)+....+""^(n)...

    Text Solution

    |

  4. In the coefficients of rth, (r+1)t h ,a n d(r+2)t h terms in the binom...

    Text Solution

    |

  5. If s(n)=sum(r=0)^(n)(1)/(.^(n)C(r))and t(n)=sum(r=0)^(n)(r)/(.^(n)C(r)...

    Text Solution

    |

  6. The sum ""^(20)C(0)+""^(20)C(1)+""^(20)C(2)+……+""^(20)C(10) is equal t...

    Text Solution

    |

  7. Find the coefficient of x^5 in (1+2x+3x^2...........)^(-3/2)

    Text Solution

    |

  8. The coefficient of x^2y^3 in the expansion of (1-x+y)^(20) is (20 !)/(...

    Text Solution

    |

  9. The coefficient of x^(10) in the expansion of (1+x^2-x^3)^8 is 476 b. ...

    Text Solution

    |

  10. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  11. If ak is the coefficient of x^k in the expansion of (1+x+x^2)^n for k ...

    Text Solution

    |

  12. The coefficient of x^(28) in the expansion of (1+x^3-x^6)^(30) is 1 b....

    Text Solution

    |

  13. The coefficient of x^(n) in the polynomial (x+.^(n)C(0))(x+3.^(n)C(1))...

    Text Solution

    |

  14. If (1+2x+x^2)^n=sum(r=0)^(2n)ar x^r ,then ar is a.(.^nC2)^2 b. .^n ...

    Text Solution

    |

  15. The value of sum(r=0)^nsum(s=0)^nsum(t=0)^nsum(u=0)^n(1) is

    Text Solution

    |

  16. If n is an even natural number , find the value of sum(r=0)^(n) ((...

    Text Solution

    |

  17. sum(r=0)^n(-2)^r*(nCr)/((r+2)Cr) is equal to

    Text Solution

    |

  18. If (1+2x+3x^2)^(10)=a0+a1x+a2x^2++a(20)x^(20),t h e na1 equals 10 b. 2...

    Text Solution

    |

  19. The remainder, if 1+2+2^2++2^(1999) is divided by 5 is.

    Text Solution

    |

  20. The value of ((""^(50)C(0))/(1)+(""^(50)C(2))/(3)+(""^(50)C(4))/(5)+…....

    Text Solution

    |