Home
Class 12
MATHS
If s(n)=sum(r=0)^(n)(1)/(.^(n)C(r))and t...

If `s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r))`, then `(t_(n))/(s_(n))` is equal to

A

`n/2`

B

`n/2-1`

C

`n-1`

D

`(2n-1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( \frac{t_n}{s_n} \), where: - \( s_n = \sum_{r=0}^{n} \frac{1}{\binom{n}{r}} \) - \( t_n = \sum_{r=0}^{n} \frac{r}{\binom{n}{r}} \) ### Step-by-Step Solution: 1. **Express \( t_n \) in a different form:** We can rewrite \( t_n \) by adding and subtracting \( n \) in the numerator: \[ t_n = \sum_{r=0}^{n} \frac{r}{\binom{n}{r}} = \sum_{r=0}^{n} \frac{n - (n - r)}{\binom{n}{r}} = \sum_{r=0}^{n} \frac{n}{\binom{n}{r}} - \sum_{r=0}^{n} \frac{n - r}{\binom{n}{r}} \] 2. **Simplify the first term:** The first term simplifies to: \[ t_n = n \sum_{r=0}^{n} \frac{1}{\binom{n}{r}} - \sum_{r=0}^{n} \frac{n - r}{\binom{n}{r}} \] We know that \( \sum_{r=0}^{n} \frac{1}{\binom{n}{r}} = s_n \). 3. **Transform the second term:** For the second term, we can use the property of binomial coefficients: \[ \sum_{r=0}^{n} \frac{n - r}{\binom{n}{r}} = \sum_{r=0}^{n} \frac{n}{\binom{n}{r}} - \sum_{r=0}^{n} \frac{r}{\binom{n}{r}} = n s_n - t_n \] Thus, we can write: \[ t_n = n s_n - (n s_n - t_n) \] 4. **Combine and solve for \( t_n \):** Rearranging gives: \[ t_n + t_n = n s_n \implies 2t_n = n s_n \implies t_n = \frac{n}{2} s_n \] 5. **Find the ratio \( \frac{t_n}{s_n} \):** Now, we can find the ratio: \[ \frac{t_n}{s_n} = \frac{\frac{n}{2} s_n}{s_n} = \frac{n}{2} \] ### Final Result: Thus, the ratio \( \frac{t_n}{s_n} \) is equal to \( \frac{n}{2} \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

If S_n=sum_(r=0)^n 1/(nC_r) and t_n=sum_(r=0)^n r/(nC_r), then t_n/S_n=

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?

If s_n=sum_(r < s) (1/(nC_r)+1/(nC_s)) and t_n=sum_(r < s)(r/(nC_r)+s/(nC_s)), then t_n/s_n=

If a_n=sum_(r=0)^n1/(nC_r), then sum_(r=0)^n r/(nC_r) equals

Let n in N, S_n=sum_(r=0)^(3n)^(3n)C_r and T_n=sum_(r=0)^n^(3n)C_(3r) , then |S_n-3T_n| equals

Let T_(n) = sum_(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S_(n) = sum_(r=0)^(n)(n)/(r^(2)-2r.n+2n^(2)) then

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 1
  1. if n>=2, ""^(n+1)C(2)+2(""^(2)C(2)+""^(3)C(2)+""^(4)C(2)+....+""^(n)...

    Text Solution

    |

  2. In the coefficients of rth, (r+1)t h ,a n d(r+2)t h terms in the binom...

    Text Solution

    |

  3. If s(n)=sum(r=0)^(n)(1)/(.^(n)C(r))and t(n)=sum(r=0)^(n)(r)/(.^(n)C(r)...

    Text Solution

    |

  4. The sum ""^(20)C(0)+""^(20)C(1)+""^(20)C(2)+……+""^(20)C(10) is equal t...

    Text Solution

    |

  5. Find the coefficient of x^5 in (1+2x+3x^2...........)^(-3/2)

    Text Solution

    |

  6. The coefficient of x^2y^3 in the expansion of (1-x+y)^(20) is (20 !)/(...

    Text Solution

    |

  7. The coefficient of x^(10) in the expansion of (1+x^2-x^3)^8 is 476 b. ...

    Text Solution

    |

  8. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  9. If ak is the coefficient of x^k in the expansion of (1+x+x^2)^n for k ...

    Text Solution

    |

  10. The coefficient of x^(28) in the expansion of (1+x^3-x^6)^(30) is 1 b....

    Text Solution

    |

  11. The coefficient of x^(n) in the polynomial (x+.^(n)C(0))(x+3.^(n)C(1))...

    Text Solution

    |

  12. If (1+2x+x^2)^n=sum(r=0)^(2n)ar x^r ,then ar is a.(.^nC2)^2 b. .^n ...

    Text Solution

    |

  13. The value of sum(r=0)^nsum(s=0)^nsum(t=0)^nsum(u=0)^n(1) is

    Text Solution

    |

  14. If n is an even natural number , find the value of sum(r=0)^(n) ((...

    Text Solution

    |

  15. sum(r=0)^n(-2)^r*(nCr)/((r+2)Cr) is equal to

    Text Solution

    |

  16. If (1+2x+3x^2)^(10)=a0+a1x+a2x^2++a(20)x^(20),t h e na1 equals 10 b. 2...

    Text Solution

    |

  17. The remainder, if 1+2+2^2++2^(1999) is divided by 5 is.

    Text Solution

    |

  18. The value of ((""^(50)C(0))/(1)+(""^(50)C(2))/(3)+(""^(50)C(4))/(5)+…....

    Text Solution

    |

  19. In the expansion of (1+x+x^3+x^4)^10, the coefficient of x^4 is ^40C4 ...

    Text Solution

    |

  20. Let S1=sum(j=1)^(10)j(j-1)^(10)Cj ,""S2=sum(j=1)^(10)j""^(10)Ci "andS"...

    Text Solution

    |