Home
Class 12
MATHS
The sum ""^(20)C(0)+""^(20)C(1)+""^(20)C...

The sum `""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10)` is equal to :

A

`2^(20)+(20!)/(10!)^(2)`

B

`2^(19)-1/2*(20!)/(10!)^(2)`

C

`2^(19)+""^(20)C_(10)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the sum \( \binom{20}{0} + \binom{20}{1} + \binom{20}{2} + \ldots + \binom{20}{10} \), we can use properties of binomial coefficients. ### Step-by-Step Solution: 1. **Understanding the Sum**: We need to calculate the sum of the first half of the binomial coefficients for \( n = 20 \). This can be expressed as: \[ S = \sum_{k=0}^{10} \binom{20}{k} \] 2. **Using the Symmetry of Binomial Coefficients**: The binomial coefficients have a symmetry property: \[ \binom{n}{k} = \binom{n}{n-k} \] For \( n = 20 \), this means: \[ \binom{20}{0} = \binom{20}{20}, \quad \binom{20}{1} = \binom{20}{19}, \quad \ldots, \quad \binom{20}{10} = \binom{20}{10} \] Therefore, we can express the sum of all coefficients from \( k = 0 \) to \( k = 20 \) as: \[ \sum_{k=0}^{20} \binom{20}{k} = 2^{20} \] 3. **Dividing the Total Sum**: The total sum \( \sum_{k=0}^{20} \binom{20}{k} = 2^{20} \) includes both halves of the coefficients: \[ \sum_{k=0}^{10} \binom{20}{k} + \sum_{k=11}^{20} \binom{20}{k} = 2^{20} \] By the symmetry property: \[ \sum_{k=0}^{10} \binom{20}{k} = \sum_{k=11}^{20} \binom{20}{k} \] Let \( S = \sum_{k=0}^{10} \binom{20}{k} \). Then: \[ S + S = 2S = 2^{20} \] Thus: \[ S = \frac{2^{20}}{2} = 2^{19} \] 4. **Final Result**: Therefore, the sum \( \binom{20}{0} + \binom{20}{1} + \binom{20}{2} + \ldots + \binom{20}{10} \) is equal to: \[ S = 2^{19} \] ### Conclusion: The answer to the problem is: \[ \boxed{2^{19}} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

The sum ""^(40)C_(0) + ""^(40)C_(1)+""^(40)C_(2)+…+""^(40)C_(20) is equal to

The sum S = ""^(20)C_(2) + 2*""^(20)C_(3) + 3 *""^(20)C_(4) + ...+ 19 * ""^(20)C_(20) is equal to

The number N=""^(20)C_(7)-""^(20)C_(8)+""^(20)C_(9)-""^(20)C_(10)+….. -""^(20)C_(20) is divisible by :

The number N=""^(20)C_(7)-""^(20)C_(8)+""^(20)C_(9)-""^(20)C_(10)+….. -""^(20)C_(20) is not divisible by :

The number N=""^(20)C_(7)-""^(20)C_(8)+""^(20)C_(9)-""^(20)C_(10)+….. -""^(20)C_(20) is not divisible by :

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

The sum of the series ""^20C_0 - ""^20C_1 + ""^20C_2 - ""^20C_3 +…….""^20C_10 is

If a= ^(20)C_(0) + ^(20)C_(3) + ^(20)C_(6) + ^(20)C_(9) + "…..", b = ^(20)C_(1) + ^(20)C_(4) + ^(20)C_(7) + "… and c = ^(20)C_(2) + ^(20)C_(5) + ^(20)C_(8) + "…..", then Value of (a-b)^(2) + (b-c)^(2) + (c-a)^(2) is

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 1
  1. In the coefficients of rth, (r+1)t h ,a n d(r+2)t h terms in the binom...

    Text Solution

    |

  2. If s(n)=sum(r=0)^(n)(1)/(.^(n)C(r))and t(n)=sum(r=0)^(n)(r)/(.^(n)C(r)...

    Text Solution

    |

  3. The sum ""^(20)C(0)+""^(20)C(1)+""^(20)C(2)+……+""^(20)C(10) is equal t...

    Text Solution

    |

  4. Find the coefficient of x^5 in (1+2x+3x^2...........)^(-3/2)

    Text Solution

    |

  5. The coefficient of x^2y^3 in the expansion of (1-x+y)^(20) is (20 !)/(...

    Text Solution

    |

  6. The coefficient of x^(10) in the expansion of (1+x^2-x^3)^8 is 476 b. ...

    Text Solution

    |

  7. The reamainder left out when 8^(2n) - (62)^(2n+1) is divided by 9 is

    Text Solution

    |

  8. If ak is the coefficient of x^k in the expansion of (1+x+x^2)^n for k ...

    Text Solution

    |

  9. The coefficient of x^(28) in the expansion of (1+x^3-x^6)^(30) is 1 b....

    Text Solution

    |

  10. The coefficient of x^(n) in the polynomial (x+.^(n)C(0))(x+3.^(n)C(1))...

    Text Solution

    |

  11. If (1+2x+x^2)^n=sum(r=0)^(2n)ar x^r ,then ar is a.(.^nC2)^2 b. .^n ...

    Text Solution

    |

  12. The value of sum(r=0)^nsum(s=0)^nsum(t=0)^nsum(u=0)^n(1) is

    Text Solution

    |

  13. If n is an even natural number , find the value of sum(r=0)^(n) ((...

    Text Solution

    |

  14. sum(r=0)^n(-2)^r*(nCr)/((r+2)Cr) is equal to

    Text Solution

    |

  15. If (1+2x+3x^2)^(10)=a0+a1x+a2x^2++a(20)x^(20),t h e na1 equals 10 b. 2...

    Text Solution

    |

  16. The remainder, if 1+2+2^2++2^(1999) is divided by 5 is.

    Text Solution

    |

  17. The value of ((""^(50)C(0))/(1)+(""^(50)C(2))/(3)+(""^(50)C(4))/(5)+…....

    Text Solution

    |

  18. In the expansion of (1+x+x^3+x^4)^10, the coefficient of x^4 is ^40C4 ...

    Text Solution

    |

  19. Let S1=sum(j=1)^(10)j(j-1)^(10)Cj ,""S2=sum(j=1)^(10)j""^(10)Ci "andS"...

    Text Solution

    |

  20. Find underset(r=0) overset(10)sumr^ (10)C(r).3^(r).(-2)^(10-r)

    Text Solution

    |