Home
Class 12
MATHS
The value of sum(r=0)^nsum(s=0)^nsum(t=0...

The value of `sum_(r=0)^nsum_(s=0)^nsum_(t=0)^nsum_(u=0)^n(1)` is

A

`""^(n)C_(4)`

B

`""^(n+1)C_(4)`

C

`""^(4n+1)C_(4)`

D

`(n+1)^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} \sum_{t=0}^{n} \sum_{u=0}^{n} 1 \] ### Step-by-Step Solution: 1. **Understanding the Summation**: The expression \(\sum_{r=0}^{n} \sum_{s=0}^{n} \sum_{t=0}^{n} \sum_{u=0}^{n} 1\) represents the total number of combinations of \(r\), \(s\), \(t\), and \(u\) where each variable ranges from 0 to \(n\). 2. **Counting the Terms**: Each summation \(\sum_{x=0}^{n} 1\) counts the number of terms from \(x=0\) to \(x=n\). There are \(n + 1\) terms in each summation (including 0). 3. **Calculating the Total**: Since there are four independent summations (for \(r\), \(s\), \(t\), and \(u\)), the total number of combinations can be calculated as: \[ (n + 1) \times (n + 1) \times (n + 1) \times (n + 1) = (n + 1)^4 \] 4. **Final Result**: Therefore, the value of the original expression is: \[ (n + 1)^4 \] ### Conclusion: The value of \(\sum_{r=0}^{n} \sum_{s=0}^{n} \sum_{t=0}^{n} \sum_{u=0}^{n} 1\) is \((n + 1)^4\).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

S=sum_(i=1)^nsum_(j=1)^isum_(k=1)^j1

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

The value of sum_(i=1)^nsum_(j=1)^isum_(k=1)^j1=220 , then the value of n equals a. 11 b. 12 c. 10 d. 9

The value of lim_(n->oo)sum_(r=0)^(n) (sum_(t=0)^(r-1)1/(5^n)*"^n C_r * "^r C_t .(3^t)) is equal to

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^n C_r=3^n-1.

The value of sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r is

The value of sum_(r=0)^(n-1)^n C_r//(^n C_r+^n C_(r+1)) equals a. n+1 b. n//2 c. n+2 d. none of these

If sum_(r=1)^nt_r=sum_(k=1)^nsum_(j=1)^ksum_(i=1)^j2 , then sum_(r=1)^n1/t_r=

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 1
  1. The coefficient of x^(n) in the polynomial (x+.^(n)C(0))(x+3.^(n)C(1))...

    Text Solution

    |

  2. If (1+2x+x^2)^n=sum(r=0)^(2n)ar x^r ,then ar is a.(.^nC2)^2 b. .^n ...

    Text Solution

    |

  3. The value of sum(r=0)^nsum(s=0)^nsum(t=0)^nsum(u=0)^n(1) is

    Text Solution

    |

  4. If n is an even natural number , find the value of sum(r=0)^(n) ((...

    Text Solution

    |

  5. sum(r=0)^n(-2)^r*(nCr)/((r+2)Cr) is equal to

    Text Solution

    |

  6. If (1+2x+3x^2)^(10)=a0+a1x+a2x^2++a(20)x^(20),t h e na1 equals 10 b. 2...

    Text Solution

    |

  7. The remainder, if 1+2+2^2++2^(1999) is divided by 5 is.

    Text Solution

    |

  8. The value of ((""^(50)C(0))/(1)+(""^(50)C(2))/(3)+(""^(50)C(4))/(5)+…....

    Text Solution

    |

  9. In the expansion of (1+x+x^3+x^4)^10, the coefficient of x^4 is ^40C4 ...

    Text Solution

    |

  10. Let S1=sum(j=1)^(10)j(j-1)^(10)Cj ,""S2=sum(j=1)^(10)j""^(10)Ci "andS"...

    Text Solution

    |

  11. Find underset(r=0) overset(10)sumr^ (10)C(r).3^(r).(-2)^(10-r)

    Text Solution

    |

  12. Prove that ^100 C0^(100)C2+^(100)C2^(100)C4+^(100)C4^(100)C6++^(100)C(...

    Text Solution

    |

  13. Find the coefficients of x^(50) in the expression (1+x)^(1000)+2x(1+x)...

    Text Solution

    |

  14. The digit at the unit place in the number 19^(2005)+11^(2005)-9^(2005)...

    Text Solution

    |

  15. If (1!)^(2) + (2!)^(2) + (3!)^(2) + "…….." + (99!)^(2) is divided by 1...

    Text Solution

    |

  16. In the expansion of (1+3x+2x^2)^6 , the coefficient of x^(11) is a. 14...

    Text Solution

    |

  17. The value of underset(r=0)overset(40)sumr.^(40)C(r).^(30)C(r) is

    Text Solution

    |

  18. The value of ( .^7C0 + ^7C1)+( .^7C1+ ^7C2)+....+(.^7C6+ ^7C7) is (A...

    Text Solution

    |

  19. The fractional part of 2^(4n)/15 is (n in N) (a) 1/15 (b) 2/15 (c...

    Text Solution

    |

  20. If (1+x)^(n) = C(0) + C(1) xm + C(2)x^(2) + "……" + C(n)x^(n), then ...

    Text Solution

    |