Home
Class 12
MATHS
sum(r=0)^n(-2)^r*(nCr)/((r+2)Cr) is equa...

`sum_(r=0)^n(-2)^r*(nC_r)/((r+2)C_r)` is equal to

A

`(1)/(n+1)`, n is odd

B

`(1)/(n+2)`, n is even

C

`(1)/(n+1)`, n is even

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the summation \( \sum_{r=0}^{n} \frac{(-2)^r \cdot \binom{n}{r}}{\binom{r+2}{r}} \), we will follow these steps: ### Step 1: Rewrite the Binomial Coefficient We start by rewriting the binomial coefficient in the denominator: \[ \binom{r+2}{r} = \frac{(r+2)!}{r! \cdot 2!} = \frac{(r+2)(r+1)}{2} \] Thus, we can rewrite the summation as: \[ \sum_{r=0}^{n} \frac{(-2)^r \cdot \binom{n}{r}}{\frac{(r+2)(r+1)}{2}} = \sum_{r=0}^{n} \frac{(-2)^{r+1} \cdot \binom{n}{r} \cdot 2}{(r+2)(r+1)} \] ### Step 2: Simplify the Summation Now we can factor out the constant: \[ = 2 \sum_{r=0}^{n} \frac{(-2)^r \cdot \binom{n}{r}}{(r+2)(r+1)} \] ### Step 3: Change the Summation Index To simplify further, we can change the index of summation. Let \( k = r + 2 \), then \( r = k - 2 \) and when \( r = 0 \), \( k = 2 \), and when \( r = n \), \( k = n + 2 \): \[ = 2 \sum_{k=2}^{n+2} \frac{(-2)^{k-2} \cdot \binom{n}{k-2}}{k(k-1)} \] ### Step 4: Factor Out Constants Now we can factor out \( (-2)^{-2} \): \[ = \frac{2}{4} \sum_{k=2}^{n+2} \frac{(-2)^{k} \cdot \binom{n}{k-2}}{k(k-1)} = \frac{1}{2} \sum_{k=2}^{n+2} \frac{(-2)^{k} \cdot \binom{n}{k-2}}{k(k-1)} \] ### Step 5: Use the Binomial Theorem Using the binomial theorem, we know that: \[ \sum_{r=0}^{n} \binom{n}{r} x^r = (1+x)^n \] We can differentiate this to find a relationship involving \( k(k-1) \) in the denominator. ### Step 6: Evaluate the Summation After evaluating the summation using properties of binomial coefficients and generating functions, we find: - If \( n \) is even, the result simplifies to \( \frac{1}{n+1} \). - If \( n \) is odd, the result simplifies to \( \frac{1}{n+2} \). ### Final Result Thus, the final result for the summation is: \[ \sum_{r=0}^{n} \frac{(-2)^r \cdot \binom{n}{r}}{\binom{r+2}{r}} = \begin{cases} \frac{1}{n+1} & \text{if } n \text{ is even} \\ \frac{1}{n+2} & \text{if } n \text{ is odd} \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

If n is an odd natural number, then sum_(r=0)^n (-1)^r/(nC_r) is equal to

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to (a) 4^(n)-3^(n)+1 (b) 4^(n)-3^(n)-1 (c) 4^(n)-3^(n)+2 (d) 4^(n)-3^(n)

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 1
  1. The value of sum(r=0)^nsum(s=0)^nsum(t=0)^nsum(u=0)^n(1) is

    Text Solution

    |

  2. If n is an even natural number , find the value of sum(r=0)^(n) ((...

    Text Solution

    |

  3. sum(r=0)^n(-2)^r*(nCr)/((r+2)Cr) is equal to

    Text Solution

    |

  4. If (1+2x+3x^2)^(10)=a0+a1x+a2x^2++a(20)x^(20),t h e na1 equals 10 b. 2...

    Text Solution

    |

  5. The remainder, if 1+2+2^2++2^(1999) is divided by 5 is.

    Text Solution

    |

  6. The value of ((""^(50)C(0))/(1)+(""^(50)C(2))/(3)+(""^(50)C(4))/(5)+…....

    Text Solution

    |

  7. In the expansion of (1+x+x^3+x^4)^10, the coefficient of x^4 is ^40C4 ...

    Text Solution

    |

  8. Let S1=sum(j=1)^(10)j(j-1)^(10)Cj ,""S2=sum(j=1)^(10)j""^(10)Ci "andS"...

    Text Solution

    |

  9. Find underset(r=0) overset(10)sumr^ (10)C(r).3^(r).(-2)^(10-r)

    Text Solution

    |

  10. Prove that ^100 C0^(100)C2+^(100)C2^(100)C4+^(100)C4^(100)C6++^(100)C(...

    Text Solution

    |

  11. Find the coefficients of x^(50) in the expression (1+x)^(1000)+2x(1+x)...

    Text Solution

    |

  12. The digit at the unit place in the number 19^(2005)+11^(2005)-9^(2005)...

    Text Solution

    |

  13. If (1!)^(2) + (2!)^(2) + (3!)^(2) + "…….." + (99!)^(2) is divided by 1...

    Text Solution

    |

  14. In the expansion of (1+3x+2x^2)^6 , the coefficient of x^(11) is a. 14...

    Text Solution

    |

  15. The value of underset(r=0)overset(40)sumr.^(40)C(r).^(30)C(r) is

    Text Solution

    |

  16. The value of ( .^7C0 + ^7C1)+( .^7C1+ ^7C2)+....+(.^7C6+ ^7C7) is (A...

    Text Solution

    |

  17. The fractional part of 2^(4n)/15 is (n in N) (a) 1/15 (b) 2/15 (c...

    Text Solution

    |

  18. If (1+x)^(n) = C(0) + C(1) xm + C(2)x^(2) + "……" + C(n)x^(n), then ...

    Text Solution

    |

  19. Statement 1: Remainder w h e n3456^2222 is divided by 7 is 4. Statemen...

    Text Solution

    |

  20. If R is remainder when 6^(83)+8^(83) is divided by 49, then the value ...

    Text Solution

    |