Home
Class 12
MATHS
Prove that ^100 C0^(100)C2+^(100)C2^(100...

Prove that `^100 C_0^(100)C_2+^(100)C_2^(100)C_4+^(100)C_4^(100)C_6++^(100)C_(98)^(100)C_(100)=1/2[^(200)C_(98)-^(100)C_(49)]dot`

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

Prove the following identieties using the theory of permutation where C_(0),C_(1),C_(2),……C_(n) are the combinatorial coefficents in the expansion of (1+x)^n,n in N: ""^(100)C_(10)+5.""^(100)C_(11)+10 .""^(100)C_(12)+ 10.""^(100)C_(13)+ 10.""^(100)C_(14)+ 10.""^(100)C_(15)=""^(105)C_(90)

The value of ""^(40)C_(0) xx ""^(100)C_(40) _ ""^(40)C_(1) xx ""^(99)C_(40) + ""^(40)C_(2) xx ""^(98)C_(40) -"……." + ""^(40)C_(40) xx ""^(60)C_(40) is equal to "____" .

Evaluate: ^100C_97

Let t_(100)=sum_(r=0)^(100)(1)/(("^(100)C_(r ))^(5)) and S_(100)=sum_(r=0)^(100)(r )/(("^(100)C_(r ))^(5)) , then the value of (100t_(100))/(S_(100)) is (a) 1 (b) 2 (c) 3 (d) 4

If ""^(100)C_(6)+4." "^(100)C_(7)+6." "^(100)C_(8)+4." "^(100)C_(9)+""^(100)C_(10) has the value equal to " "^(x)C_(y) , then the possible value (s) of x+y can be :

If ^100 C_5+5^(100)C_6+10^(100)C_7+10^(100)C_8+5^(100)C_9+^(100)C_(10) has the value equal to ^n C_r , then least value of (n+r) is equal to 200 (2) 195 (3) 115 (4) 105

The coefficient of x^(53) in the expansion sum_(m=0)^(100)^100C_m(x-3)^(100-m)2^m is (a) 100 C_(47) (b.) 100 C_(53) (c.) -100C_(53) (d.) none of these

The value of sum_(r=0)^50 (.^(100)C_r.^(200)C_(150+r)) is equal to

(C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+ . . . .+(C_(100))/(101) equals

The value of ((100),(0))((200),(150))+((100),(1))((200),(151))+......+((100),(50))((200),(200)) equals (where ((n),(r ))="^(n)C_(r) )

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 1
  1. If n is an even natural number , find the value of sum(r=0)^(n) ((...

    Text Solution

    |

  2. sum(r=0)^n(-2)^r*(nCr)/((r+2)Cr) is equal to

    Text Solution

    |

  3. If (1+2x+3x^2)^(10)=a0+a1x+a2x^2++a(20)x^(20),t h e na1 equals 10 b. 2...

    Text Solution

    |

  4. The remainder, if 1+2+2^2++2^(1999) is divided by 5 is.

    Text Solution

    |

  5. The value of ((""^(50)C(0))/(1)+(""^(50)C(2))/(3)+(""^(50)C(4))/(5)+…....

    Text Solution

    |

  6. In the expansion of (1+x+x^3+x^4)^10, the coefficient of x^4 is ^40C4 ...

    Text Solution

    |

  7. Let S1=sum(j=1)^(10)j(j-1)^(10)Cj ,""S2=sum(j=1)^(10)j""^(10)Ci "andS"...

    Text Solution

    |

  8. Find underset(r=0) overset(10)sumr^ (10)C(r).3^(r).(-2)^(10-r)

    Text Solution

    |

  9. Prove that ^100 C0^(100)C2+^(100)C2^(100)C4+^(100)C4^(100)C6++^(100)C(...

    Text Solution

    |

  10. Find the coefficients of x^(50) in the expression (1+x)^(1000)+2x(1+x)...

    Text Solution

    |

  11. The digit at the unit place in the number 19^(2005)+11^(2005)-9^(2005)...

    Text Solution

    |

  12. If (1!)^(2) + (2!)^(2) + (3!)^(2) + "…….." + (99!)^(2) is divided by 1...

    Text Solution

    |

  13. In the expansion of (1+3x+2x^2)^6 , the coefficient of x^(11) is a. 14...

    Text Solution

    |

  14. The value of underset(r=0)overset(40)sumr.^(40)C(r).^(30)C(r) is

    Text Solution

    |

  15. The value of ( .^7C0 + ^7C1)+( .^7C1+ ^7C2)+....+(.^7C6+ ^7C7) is (A...

    Text Solution

    |

  16. The fractional part of 2^(4n)/15 is (n in N) (a) 1/15 (b) 2/15 (c...

    Text Solution

    |

  17. If (1+x)^(n) = C(0) + C(1) xm + C(2)x^(2) + "……" + C(n)x^(n), then ...

    Text Solution

    |

  18. Statement 1: Remainder w h e n3456^2222 is divided by 7 is 4. Statemen...

    Text Solution

    |

  19. If R is remainder when 6^(83)+8^(83) is divided by 49, then the value ...

    Text Solution

    |

  20. The remainder when 2^(2003) is divided by 17 is:

    Text Solution

    |