Home
Class 12
MATHS
If (1+x)^(n)=C(0)+C(1)x+…..+C(n)x^(n), t...

If `(1+x)^(n)=C_(0)+C_(1)x+…..+C_(n)x^(n)`, then `(C_(1))/(C_(0))+(2C_(2))/(C_(1))+(3C_(3))/(C_(2))+....+(nC_(n))/(C_(n-1))` is :

A

`(2^(n))/(n!)`

B

`(n+1)^(n)/(n!)`

C

`(n(n-1))/(2)`

D

`(n(n+1))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{C_1}{C_0} + \frac{2C_2}{C_1} + \frac{3C_3}{C_2} + \ldots + \frac{nC_n}{C_{n-1}} \] where \( C_r \) represents the binomial coefficients given by \( C_r = \binom{n}{r} \). ### Step-by-Step Solution: 1. **Understanding the Binomial Coefficients**: The binomial coefficient \( C_r \) is defined as: \[ C_r = \binom{n}{r} = \frac{n!}{r!(n-r)!} \] Therefore, we can express \( C_1, C_2, \ldots, C_n \) in terms of \( n \). 2. **Expressing the Ratios**: We can rewrite the terms in the expression: \[ \frac{C_1}{C_0} = \frac{\binom{n}{1}}{\binom{n}{0}} = \frac{n}{1} = n \] \[ \frac{2C_2}{C_1} = \frac{2 \cdot \binom{n}{2}}{\binom{n}{1}} = \frac{2 \cdot \frac{n(n-1)}{2}}{n} = n - 1 \] \[ \frac{3C_3}{C_2} = \frac{3 \cdot \binom{n}{3}}{\binom{n}{2}} = \frac{3 \cdot \frac{n(n-1)(n-2)}{6}}{\frac{n(n-1)}{2}} = \frac{3(n-2)}{3} = n - 2 \] Continuing this pattern, we find: \[ \frac{kC_k}{C_{k-1}} = n - (k - 1) \] 3. **Summing the Series**: The entire expression can now be rewritten as: \[ n + (n - 1) + (n - 2) + \ldots + 1 \] This is the sum of the first \( n \) natural numbers, which can be calculated using the formula: \[ S = \frac{n(n + 1)}{2} \] 4. **Final Result**: Therefore, the final result of the given expression is: \[ \frac{n(n + 1)}{2} \] ### Conclusion: The value of the expression \( \frac{C_1}{C_0} + \frac{2C_2}{C_1} + \frac{3C_3}{C_2} + \ldots + \frac{nC_n}{C_{n-1}} \) is: \[ \frac{n(n + 1)}{2} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 1|89 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

Prove that C_1/C_0+(2c_(2))/C_1+(3C_3)/(C_2)+......+(n.C_n)/(C_(n-1))=(n(n+1))/2

If (1+x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + "….." + C_(n)x^(n) , then C_(0) - (C_(0) + C_(1)) +(C_(0) + C_(1) + C_(2)) - (C_(0) + C_(1) + C_(2) + C_(3))+ "….." (-1)^(n-1) (C_(0) + C_(1) + "……" + C_(n-1)) is (where n is even integer and C_(r) = .^(n)C_(r) )

If (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r),(1 + (C_(0))/(C_(1))) (1 + (C_(2))/(C_(1)))...(1 + (C_(n))/(C_(n-1))) is equal to

(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) then C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+…..+C_(n-2)C_(n) is equal to :

If (1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) +…+ C_(n) x^(n) , then the sum C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1)) is equal to

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

If (1+x)^(n) = C_(0)+C_(1)x + C_(2) x^(2) +...+C_(n)x^(n) then C_(0)""^(2)+C_(1)""^(2) + C_(2)""^(2) +...+C_(n)""^(2) is equal to

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 2
  1. Find the sum 2C0+(2^3)/2C1+(2^3)/3C2+(2^4)/4C3++(2^(11))/(11)C(10)dot

    Text Solution

    |

  2. The sum to (n+1) terms of the series C0/2-C1/3+C2/4-C3/5+......=

    Text Solution

    |

  3. If (1+x)^(n)=C(0)+C(1)x+…..+C(n)x^(n), then (C(1))/(C(0))+(2C(2))/(C(1...

    Text Solution

    |

  4. sum(r=0)^(n)(""^(n)C(r))/(r+2) is equal to :

    Text Solution

    |

  5. If .^(47)C(4)+underset(r=1)overset(5)(sum).^(52-r)C(3) is equal to

    Text Solution

    |

  6. sum(r=0)^m .^(n+r)Cn is equal to

    Text Solution

    |

  7. Evaluate sum(i=0)^(n)sum(j=0)^(n) ""^(n)C(j) *""^(j)C(i), ile j .

    Text Solution

    |

  8. sum(r=0)^(n)((r+2)/(r+1))*""^(n)C(r) is equal to :

    Text Solution

    |

  9. The expression (""^(10)C(0))^(2)-(""^(10)C(1))^(2)+(""^(10)C(2))^(2)...

    Text Solution

    |

  10. If C(0),C(1), C(2),...,C(n) denote the cefficients in the expansion...

    Text Solution

    |

  11. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |

  12. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |

  13. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  14. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  15. Find the value of underset(0leiltjlen)(sumsum)(.^(n)C(i)+.^(n)C(j)).

    Text Solution

    |

  16. If n is a positive integer and C(k)=""^(n)C(k), then the value of sum(...

    Text Solution

    |

  17. If C(0),C(1),C(2),…,C(n) are the binomial coefficients in the expansio...

    Text Solution

    |

  18. Find the sum of 1/(1!(n-1)!)+1/(3!(n-3)!)+1/(5!(n-5)!)+ ...,

    Text Solution

    |

  19. If (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^(2)+….+a(2n)x^(2n) where a(0), a(...

    Text Solution

    |

  20. For any positive integer (m,n) (with ngeqm), Let ((n),(m)) =.^nCm Prov...

    Text Solution

    |