Home
Class 12
MATHS
sum(r=0)^(n)((r+2)/(r+1))*""^(n)C(r) is ...

`sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r)` is equal to :

A

`(2^(n)(n+2)-1)/((n+1))`

B

`(2^(n)(n+1)-1)/((n+1))`

C

`(2^(n)(n+4)-1)/((n+1))`

D

`(2^(n)(n+3)-1)/((n+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( S_n = \sum_{r=0}^{n} \frac{r+2}{r+1} \binom{n}{r} \), we can break it down step by step. ### Step 1: Rewrite the expression We start with the expression: \[ S_n = \sum_{r=0}^{n} \frac{r+2}{r+1} \binom{n}{r} \] We can separate the fraction: \[ S_n = \sum_{r=0}^{n} \left( 1 + \frac{1}{r+1} \right) \binom{n}{r} \] This simplifies to: \[ S_n = \sum_{r=0}^{n} \binom{n}{r} + \sum_{r=0}^{n} \frac{1}{r+1} \binom{n}{r} \] ### Step 2: Evaluate the first summation The first summation is simply: \[ \sum_{r=0}^{n} \binom{n}{r} = 2^n \] ### Step 3: Evaluate the second summation For the second summation, we can use the identity: \[ \sum_{r=0}^{n} \frac{1}{r+1} \binom{n}{r} = \frac{1}{n+1} \sum_{r=0}^{n} \binom{n+1}{r+1} = \frac{1}{n+1} \cdot 2^{n+1} \] This follows from the fact that \(\sum_{r=0}^{n} \binom{n+1}{r+1} = 2^{n+1}\). ### Step 4: Combine the results Now, substituting back into our expression for \( S_n \): \[ S_n = 2^n + \frac{1}{n+1} \cdot 2^{n+1} \] We can factor out \( 2^n \): \[ S_n = 2^n \left( 1 + \frac{2}{n+1} \right) \] This simplifies to: \[ S_n = 2^n \cdot \frac{n+2}{n+1} \] ### Final Result Thus, the final result is: \[ S_n = \frac{2^n (n + 2)}{n + 1} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 1|89 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

If n is an even natural number , then sum_(r=0)^(n) (( -1)^(r))/(""^(n)C_(r)) equals

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

sum_(r=1)^n r(n-r) is equal to :

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 2
  1. sum(r=0)^m .^(n+r)Cn is equal to

    Text Solution

    |

  2. Evaluate sum(i=0)^(n)sum(j=0)^(n) ""^(n)C(j) *""^(j)C(i), ile j .

    Text Solution

    |

  3. sum(r=0)^(n)((r+2)/(r+1))*""^(n)C(r) is equal to :

    Text Solution

    |

  4. The expression (""^(10)C(0))^(2)-(""^(10)C(1))^(2)+(""^(10)C(2))^(2)...

    Text Solution

    |

  5. If C(0),C(1), C(2),...,C(n) denote the cefficients in the expansion...

    Text Solution

    |

  6. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |

  7. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |

  8. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  9. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  10. Find the value of underset(0leiltjlen)(sumsum)(.^(n)C(i)+.^(n)C(j)).

    Text Solution

    |

  11. If n is a positive integer and C(k)=""^(n)C(k), then the value of sum(...

    Text Solution

    |

  12. If C(0),C(1),C(2),…,C(n) are the binomial coefficients in the expansio...

    Text Solution

    |

  13. Find the sum of 1/(1!(n-1)!)+1/(3!(n-3)!)+1/(5!(n-5)!)+ ...,

    Text Solution

    |

  14. If (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^(2)+….+a(2n)x^(2n) where a(0), a(...

    Text Solution

    |

  15. For any positive integer (m,n) (with ngeqm), Let ((n),(m)) =.^nCm Prov...

    Text Solution

    |

  16. Prove that ""^(n)C(3)+""^(n)C(7) + ""^(n)C(11) + ...= 1/2{2^(n-1) -...

    Text Solution

    |

  17. If n in N, then sum(r=0)^(n) (-1)^(n) (""^(n)C(r))/(""^(r+2)C(r)) is ...

    Text Solution

    |

  18. The value of ((50),(0))((50),(1))+((50),(1))((50),(2)) + ...+ ((50),(...

    Text Solution

    |

  19. The value of sum(r=0)^(n) sum(p=0)^(r) ""^(n)C(r) . ""^(r)C(p) is...

    Text Solution

    |

  20. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |