Home
Class 12
MATHS
If C(0),C(1), C(2),...,C(n) denote the c...

If `C_(0),C_(1), C_(2),...,C_(n)` denote the cefficients in
the expansion of `(1 + x)^(n)`, then
`C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = ` .

A

`2^(n)`

B

`2^(n)+n*2^(n-1)`

C

`2^(n)*(n+1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the sum: \[ S_n = C_0 + 3C_1 + 5C_2 + \ldots + (2n + 1)C_n \] where \( C_r = \binom{n}{r} \) are the coefficients in the expansion of \( (1 + x)^n \). ### Step-by-step Solution: 1. **Express the sum in terms of binomial coefficients:** \[ S_n = \sum_{r=0}^{n} (2r + 1) C_r = \sum_{r=0}^{n} (2r + 1) \binom{n}{r} \] 2. **Separate the sum into two parts:** \[ S_n = \sum_{r=0}^{n} 2r \binom{n}{r} + \sum_{r=0}^{n} \binom{n}{r} \] 3. **Evaluate the second sum:** The sum of the binomial coefficients is: \[ \sum_{r=0}^{n} \binom{n}{r} = 2^n \] 4. **Evaluate the first sum using the identity \( r \binom{n}{r} = n \binom{n-1}{r-1} \):** \[ \sum_{r=0}^{n} r \binom{n}{r} = n \sum_{r=1}^{n} \binom{n-1}{r-1} = n \cdot 2^{n-1} \] 5. **Substituting back into the equation for \( S_n \):** \[ S_n = 2 \cdot n \cdot 2^{n-1} + 2^n \] 6. **Simplifying the expression:** \[ S_n = 2n \cdot 2^{n-1} + 2^n = 2^{n} (n + 1) \] Thus, the final result is: \[ S_n = 2^n (n + 1) \] ### Final Answer: \[ S_n = 2^n (n + 1) \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 1|89 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1. C_(1) - 2 . C_(2) + 3.C_(3) - 4. C_(4) + ...+ (-1)^(n-1) nC_(n)=

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then 1^(2).C_(1) + 2^(2) + 3^(3).C_(3) + ...+n^(2).C_(n)= .

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_0,C_1,C_2..C_n denote the coefficients in the binomial expansion of (1 +x)^n , then C_0 + 2.C_1 +3.C_2+. (n+1) C_n

If C_(0),C_(1), C_(2),...,C_(N) denote the binomial coefficients in the expansion of (1 + x)^(n) , then 1^(3). C_(1)-2^(3). C_(3) - 4^(3) . C_(4) + ...+ (-1)^(n-1)n^(3) C_(n)=

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0)""^(2) + 2 C_(1)""^(2) + 3C_(2)""^(2) + ...+ (n +1)C_(n)""^(2) =

If C_(0), C_(1), C_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^n) , then xC_(0)-(x -1) C_(1)+(x-2)C_(2)-(x -3)C_(3)+...+(-1)^(n) (x -n) C_(n)=

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) + (C_(1))/(2) + (C_(2))/(3) + (C_(3))/(4) +...+ (C_(n))/(n+1) is

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 2
  1. sum(r=0)^(n)((r+2)/(r+1))*""^(n)C(r) is equal to :

    Text Solution

    |

  2. The expression (""^(10)C(0))^(2)-(""^(10)C(1))^(2)+(""^(10)C(2))^(2)...

    Text Solution

    |

  3. If C(0),C(1), C(2),...,C(n) denote the cefficients in the expansion...

    Text Solution

    |

  4. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |

  5. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |

  6. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  7. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  8. Find the value of underset(0leiltjlen)(sumsum)(.^(n)C(i)+.^(n)C(j)).

    Text Solution

    |

  9. If n is a positive integer and C(k)=""^(n)C(k), then the value of sum(...

    Text Solution

    |

  10. If C(0),C(1),C(2),…,C(n) are the binomial coefficients in the expansio...

    Text Solution

    |

  11. Find the sum of 1/(1!(n-1)!)+1/(3!(n-3)!)+1/(5!(n-5)!)+ ...,

    Text Solution

    |

  12. If (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^(2)+….+a(2n)x^(2n) where a(0), a(...

    Text Solution

    |

  13. For any positive integer (m,n) (with ngeqm), Let ((n),(m)) =.^nCm Prov...

    Text Solution

    |

  14. Prove that ""^(n)C(3)+""^(n)C(7) + ""^(n)C(11) + ...= 1/2{2^(n-1) -...

    Text Solution

    |

  15. If n in N, then sum(r=0)^(n) (-1)^(n) (""^(n)C(r))/(""^(r+2)C(r)) is ...

    Text Solution

    |

  16. The value of ((50),(0))((50),(1))+((50),(1))((50),(2)) + ...+ ((50),(...

    Text Solution

    |

  17. The value of sum(r=0)^(n) sum(p=0)^(r) ""^(n)C(r) . ""^(r)C(p) is...

    Text Solution

    |

  18. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |

  19. (1+x)=C(0)+C(1)x+….+C(n)x^(n) then the value of sumsum(0lerltslen)C(r)...

    Text Solution

    |

  20. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |