Home
Class 12
MATHS
If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n...

If `(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n)`, then the value of `sumsum_(0lerltslen)(r+s)(C_(r)+C_(s))` is :

A

`n^(2)*2^(n)`

B

`n*2^(n)`

C

`n^(2)*2^(2n)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{r=0}^{n} \sum_{s=r}^{n} (r+s) (C_r + C_s) \] where \( C_r \) and \( C_s \) are the binomial coefficients from the expansion of \( (1+x)^n \). ### Step 1: Understanding the Binomial Coefficients The binomial theorem states that: \[ (1+x)^n = \sum_{k=0}^{n} C_k x^k \] where \( C_k = \binom{n}{k} \) is the binomial coefficient. ### Step 2: Rewrite the Expression We can rewrite the double summation: \[ \sum_{r=0}^{n} \sum_{s=r}^{n} (r+s)(C_r + C_s) \] This can be separated into two parts: \[ \sum_{r=0}^{n} \sum_{s=r}^{n} (r+s)C_r + \sum_{r=0}^{n} \sum_{s=r}^{n} (r+s)C_s \] ### Step 3: Evaluate Each Part 1. **First Part**: \[ \sum_{r=0}^{n} \sum_{s=r}^{n} (r+s)C_r \] Here, \( C_r \) is constant with respect to \( s \), so we can factor it out: \[ = \sum_{r=0}^{n} C_r \sum_{s=r}^{n} (r+s) \] The inner sum can be simplified: \[ \sum_{s=r}^{n} (r+s) = \sum_{s=r}^{n} r + \sum_{s=r}^{n} s = r(n-r+1) + \sum_{s=r}^{n} s \] The second sum, \( \sum_{s=r}^{n} s \), can be calculated as: \[ \sum_{s=r}^{n} s = \frac{n(n+1)}{2} - \frac{(r-1)r}{2} \] 2. **Second Part**: \[ \sum_{r=0}^{n} \sum_{s=r}^{n} (r+s)C_s \] This can be evaluated similarly, leading to a similar form as the first part. ### Step 4: Combine the Results After calculating both parts, we can combine them to get the final result. ### Final Step: Simplify After performing the calculations and simplifications, we find that the total sum can be expressed in terms of \( n \) and \( 2^n \). ### Final Answer The final value of the expression is: \[ n(n+1)2^{n-1} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 1|89 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(C_(r)+C_(s))^(2) is :

(1+x)=C_(0)+C_(1)x+….+C_(n)x^(n) then the value of sumsum_(0lerltslen)C_(r)C_(s) is equal to :

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following (sumsum)_(0leilt j le n)jC_(i)

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following (sumsum)_(0leile jlen)(i +j)(C_(i)pmC_(j) )^(2)

If (1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) +…+ C_(n) x^(n) , then the sum C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1)) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +…+ C_(n) x^(n) , find the values of the following . sum_(i=0)^(n) sum_(j=0)^(n) (i+j) C_(i) C_(j)

If (1+x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + "….." + C_(n)x^(n) , then C_(0) - (C_(0) + C_(1)) +(C_(0) + C_(1) + C_(2)) - (C_(0) + C_(1) + C_(2) + C_(3))+ "….." (-1)^(n-1) (C_(0) + C_(1) + "……" + C_(n-1)) is (where n is even integer and C_(r) = .^(n)C_(r) )

If (1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n then the value of sumsum_(0lt=iltjlt=n)C_iC_j is (A) 2^(2n-1)- .^(2n)C_(n/2) (B) .^(2n)C_n (C) 2^n (D) none of these

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following underset(0leile jlen)(sumsum)C_(i)C_(j)

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 2
  1. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |

  2. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |

  3. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  4. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  5. Find the value of underset(0leiltjlen)(sumsum)(.^(n)C(i)+.^(n)C(j)).

    Text Solution

    |

  6. If n is a positive integer and C(k)=""^(n)C(k), then the value of sum(...

    Text Solution

    |

  7. If C(0),C(1),C(2),…,C(n) are the binomial coefficients in the expansio...

    Text Solution

    |

  8. Find the sum of 1/(1!(n-1)!)+1/(3!(n-3)!)+1/(5!(n-5)!)+ ...,

    Text Solution

    |

  9. If (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^(2)+….+a(2n)x^(2n) where a(0), a(...

    Text Solution

    |

  10. For any positive integer (m,n) (with ngeqm), Let ((n),(m)) =.^nCm Prov...

    Text Solution

    |

  11. Prove that ""^(n)C(3)+""^(n)C(7) + ""^(n)C(11) + ...= 1/2{2^(n-1) -...

    Text Solution

    |

  12. If n in N, then sum(r=0)^(n) (-1)^(n) (""^(n)C(r))/(""^(r+2)C(r)) is ...

    Text Solution

    |

  13. The value of ((50),(0))((50),(1))+((50),(1))((50),(2)) + ...+ ((50),(...

    Text Solution

    |

  14. The value of sum(r=0)^(n) sum(p=0)^(r) ""^(n)C(r) . ""^(r)C(p) is...

    Text Solution

    |

  15. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |

  16. (1+x)=C(0)+C(1)x+….+C(n)x^(n) then the value of sumsum(0lerltslen)C(r)...

    Text Solution

    |

  17. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |

  18. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  19. Prove that sum(r=0)^ssum(s=1)^n^n Cs^n Cr=3^n-1.

    Text Solution

    |

  20. The value of underset(r=0)overset(20)sum(-1)^(r )(.^(50)C(r))/(r+2) is...

    Text Solution

    |