Home
Class 12
MATHS
If n is a positive integer and C(k)=""^(...

If n is a positive integer and `C_(k)=""^(n)C_(k)`, then the value of `sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2)` is :

A

(a) `(n (n+2)(n+1)^(2))/(12)`

B

(b) `(n(n+1)(n+2)^(2))/(12)`

C

(c) `(n(n+2)(n+1))/(12)`

D

(d) None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \sum_{k=1}^{n} k^3 \left( \frac{C_k}{C_{k-1}} \right)^2 \] where \( C_k = \binom{n}{k} \). ### Step 1: Understanding the terms \( C_k \) and \( C_{k-1} \) The binomial coefficient \( C_k \) is defined as: \[ C_k = \binom{n}{k} = \frac{n!}{k!(n-k)!} \] Similarly, we can express \( C_{k-1} \): \[ C_{k-1} = \binom{n}{k-1} = \frac{n!}{(k-1)!(n-k+1)!} \] ### Step 2: Finding the ratio \( \frac{C_k}{C_{k-1}} \) Now, we compute the ratio: \[ \frac{C_k}{C_{k-1}} = \frac{\frac{n!}{k!(n-k)!}}{\frac{n!}{(k-1)!(n-k+1)!}} = \frac{(n-k+1)}{k} \] ### Step 3: Squaring the ratio Next, we square this ratio: \[ \left( \frac{C_k}{C_{k-1}} \right)^2 = \left( \frac{n-k+1}{k} \right)^2 = \frac{(n-k+1)^2}{k^2} \] ### Step 4: Substituting back into the summation Now we substitute this back into our summation: \[ \sum_{k=1}^{n} k^3 \left( \frac{C_k}{C_{k-1}} \right)^2 = \sum_{k=1}^{n} k^3 \cdot \frac{(n-k+1)^2}{k^2} = \sum_{k=1}^{n} k(n-k+1)^2 \] ### Step 5: Expanding the expression We can expand \( (n-k+1)^2 \): \[ (n-k+1)^2 = n^2 - 2nk + k^2 + 2n - 2k + 1 \] Thus, we have: \[ \sum_{k=1}^{n} k(n-k+1)^2 = \sum_{k=1}^{n} k(n^2 - 2nk + k^2 + 2n - 2k + 1) \] ### Step 6: Distributing the summation We can distribute the summation: \[ = n^2 \sum_{k=1}^{n} k - 2n \sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k^3 + 2n \sum_{k=1}^{n} k - 2 \sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k \] ### Step 7: Using summation formulas Using the formulas for the summations: 1. \( \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \) 2. \( \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \) 3. \( \sum_{k=1}^{n} k^3 = \left( \frac{n(n+1)}{2} \right)^2 \) ### Step 8: Putting it all together Now we substitute these formulas into our expression and simplify. After simplification, we will find: \[ \sum_{k=1}^{n} k(n-k+1)^2 = \frac{n(n+1)(n+2)(n+1)}{12} \] ### Final Result Thus, the value of the original summation is: \[ \frac{n(n+1)(n+2)(n+1)}{12} \] This corresponds to option A: \[ \frac{n(n+1)(n+2)(n+1)}{12} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 1|89 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

If a, b, c are consecutive positive integers and log (1+ac) = 2K, then the value of K is

If k a n d n are positive integers and s_k=1^k+2^k+3^k++n^k , then prove that sum_(r=1)^m^(m+1)C_r s_r=(n+1)^(m+1)-(n+1)dot

T_(k) = K ^(3) + 3 ^(k) , then find sum_(k =1) ^( n ) T _(k).

If for n in N ,sum_(k=0)^(2n)(-1)^k(^(2n)C_k)^2=A , then find the value of sum_(k=0)^(2n)(-1)^k(k-2n)(^(2n)C_k)^2dot

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

If n is a positive integer then ^nC_r+^nC_(r+1)=^(n+1)^C_(r+1) Also coefficient of x^r in the expansion of (1+x)^n=^nC_r. answer the following question: If n is a positive integer then ^nC_n+^(n+1)C_n+^(n+2)C_n+.....+^(n+k)C_n= (A) ^(n+k+1)C_(n+2) (B) ^(n+k+1)C_(n+1) (C) ^(n+k+1)C_k (D) ^(n+k+1)C_(n-2)

If n is a positive integer then ^nC_r+^nC_(r+1)=^(n+1)^C_(r+1) Also coefficient of x^r in the expansion of (1+x)^n=^nC_r. In an identity in x, coefficient of similar powers of x on the two sides re equal. On the basis of above information answer the following question: If n is a positive integer then ^nC_n+^(n+1)C_n+^(n+2)C_n+.....+^(n+k)C_n= (A) ^(n+k+1)C_(n+2) (B) ^(n+k+1)C_(n+1) (C) ^(n+k+1)C_k (D) ^(n+k+1)C_(n-2)

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 2
  1. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  2. Find the value of underset(0leiltjlen)(sumsum)(.^(n)C(i)+.^(n)C(j)).

    Text Solution

    |

  3. If n is a positive integer and C(k)=""^(n)C(k), then the value of sum(...

    Text Solution

    |

  4. If C(0),C(1),C(2),…,C(n) are the binomial coefficients in the expansio...

    Text Solution

    |

  5. Find the sum of 1/(1!(n-1)!)+1/(3!(n-3)!)+1/(5!(n-5)!)+ ...,

    Text Solution

    |

  6. If (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^(2)+….+a(2n)x^(2n) where a(0), a(...

    Text Solution

    |

  7. For any positive integer (m,n) (with ngeqm), Let ((n),(m)) =.^nCm Prov...

    Text Solution

    |

  8. Prove that ""^(n)C(3)+""^(n)C(7) + ""^(n)C(11) + ...= 1/2{2^(n-1) -...

    Text Solution

    |

  9. If n in N, then sum(r=0)^(n) (-1)^(n) (""^(n)C(r))/(""^(r+2)C(r)) is ...

    Text Solution

    |

  10. The value of ((50),(0))((50),(1))+((50),(1))((50),(2)) + ...+ ((50),(...

    Text Solution

    |

  11. The value of sum(r=0)^(n) sum(p=0)^(r) ""^(n)C(r) . ""^(r)C(p) is...

    Text Solution

    |

  12. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |

  13. (1+x)=C(0)+C(1)x+….+C(n)x^(n) then the value of sumsum(0lerltslen)C(r)...

    Text Solution

    |

  14. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |

  15. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  16. Prove that sum(r=0)^ssum(s=1)^n^n Cs^n Cr=3^n-1.

    Text Solution

    |

  17. The value of underset(r=0)overset(20)sum(-1)^(r )(.^(50)C(r))/(r+2) is...

    Text Solution

    |

  18. The value of ""^(n)C(n)+""^(n+1)C(n)+""^(n+2)C(n)+….+""^(n+k)C(n) :

    Text Solution

    |

  19. The value of sum(r=0)^50 (.^(100)Cr.^(200)C(150+r)) is equal to

    Text Solution

    |

  20. The value of sum(r=0)^(2n)(-1)^(r)*(""^(2n)C(r))^(2) is equal to :

    Text Solution

    |