Home
Class 12
MATHS
If C(0),C(1),C(2),…,C(n) are the binomia...

If `C_(0),C_(1),C_(2),…,C_(n)` are the binomial coefficients in the expansion of `(1+x)^(n)*n` being even, then `C_(0)+(C_(0)+C_(1))+(C_(0)+C_(1)+C_(2))+….+(C_(0)+C_(1)+C_(2)+…+C_(n-1))` is equal to :

A

`n*2^(n)`

B

`n*2^(n-1)`

C

`n*2^(n-2)`

D

`n*2^(n-3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ S = C_0 + (C_0 + C_1) + (C_0 + C_1 + C_2) + \ldots + (C_0 + C_1 + C_2 + \ldots + C_{n-1}) \] where \( C_r \) are the binomial coefficients from the expansion of \( (1+x)^n \). ### Step 1: Rewrite the Expression The expression can be rewritten as: \[ S = nC_0 + (n-1)C_1 + (n-2)C_2 + \ldots + 1C_{n-1} \] This is because \( C_0 \) appears \( n \) times, \( C_1 \) appears \( n-1 \) times, and so on, until \( C_{n-1} \) which appears once. ### Step 2: Generalize the Expression We can express \( S \) in summation notation: \[ S = \sum_{r=0}^{n-1} (n-r) C_r \] ### Step 3: Split the Summation We can split this summation into two parts: \[ S = n \sum_{r=0}^{n-1} C_r - \sum_{r=0}^{n-1} r C_r \] ### Step 4: Evaluate the First Summation The first summation \( \sum_{r=0}^{n-1} C_r \) is the sum of the binomial coefficients from \( C_0 \) to \( C_{n-1} \). From the binomial theorem, we know: \[ \sum_{r=0}^{n} C_r = 2^n \] Thus, \[ \sum_{r=0}^{n-1} C_r = 2^n - C_n = 2^n - 1 \] ### Step 5: Evaluate the Second Summation The second summation \( \sum_{r=0}^{n-1} r C_r \) can be evaluated by differentiating the binomial expansion: \[ \sum_{r=0}^{n} C_r x^r = (1+x)^n \] Differentiating both sides with respect to \( x \): \[ \sum_{r=1}^{n} r C_r x^{r-1} = n(1+x)^{n-1} \] Setting \( x = 1 \): \[ \sum_{r=1}^{n} r C_r = n \cdot 2^{n-1} \] Thus, \[ \sum_{r=0}^{n-1} r C_r = n \cdot 2^{n-1} - C_n = n \cdot 2^{n-1} - 1 \] ### Step 6: Substitute Back into the Expression for S Now substituting back into our expression for \( S \): \[ S = n(2^n - 1) - (n \cdot 2^{n-1} - 1) \] ### Step 7: Simplify the Expression Simplifying \( S \): \[ S = n \cdot 2^n - n - n \cdot 2^{n-1} + 1 \] Factoring out \( n \): \[ S = n \cdot 2^{n-1} (2 - 1) + 1 - n = n \cdot 2^{n-1} + 1 - n \] ### Final Result Thus, the final result is: \[ S = n \cdot 2^{n-1} + 1 - n \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 1|89 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)(C_(r) +C_(s))

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(0 ler )^(n)sum_(lt s len)^(n)C_(r)C_(s) =.

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0)""^(2) + 2 C_(1)""^(2) + 3C_(2)""^(2) + ...+ (n +1)C_(n)""^(2) =

If C_(0), C_(1), C_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^n) , then xC_(0)-(x -1) C_(1)+(x-2)C_(2)-(x -3)C_(3)+...+(-1)^(n) (x -n) C_(n)=

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .

If C_(0),C_(1), C_(2),...,C_(N) denote the binomial coefficients in the expansion of (1 + x)^(n) , then 1^(3). C_(1)-2^(3). C_(3) - 4^(3) . C_(4) + ...+ (-1)^(n-1)n^(3) C_(n)=

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 2
  1. Find the value of underset(0leiltjlen)(sumsum)(.^(n)C(i)+.^(n)C(j)).

    Text Solution

    |

  2. If n is a positive integer and C(k)=""^(n)C(k), then the value of sum(...

    Text Solution

    |

  3. If C(0),C(1),C(2),…,C(n) are the binomial coefficients in the expansio...

    Text Solution

    |

  4. Find the sum of 1/(1!(n-1)!)+1/(3!(n-3)!)+1/(5!(n-5)!)+ ...,

    Text Solution

    |

  5. If (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^(2)+….+a(2n)x^(2n) where a(0), a(...

    Text Solution

    |

  6. For any positive integer (m,n) (with ngeqm), Let ((n),(m)) =.^nCm Prov...

    Text Solution

    |

  7. Prove that ""^(n)C(3)+""^(n)C(7) + ""^(n)C(11) + ...= 1/2{2^(n-1) -...

    Text Solution

    |

  8. If n in N, then sum(r=0)^(n) (-1)^(n) (""^(n)C(r))/(""^(r+2)C(r)) is ...

    Text Solution

    |

  9. The value of ((50),(0))((50),(1))+((50),(1))((50),(2)) + ...+ ((50),(...

    Text Solution

    |

  10. The value of sum(r=0)^(n) sum(p=0)^(r) ""^(n)C(r) . ""^(r)C(p) is...

    Text Solution

    |

  11. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |

  12. (1+x)=C(0)+C(1)x+….+C(n)x^(n) then the value of sumsum(0lerltslen)C(r)...

    Text Solution

    |

  13. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |

  14. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  15. Prove that sum(r=0)^ssum(s=1)^n^n Cs^n Cr=3^n-1.

    Text Solution

    |

  16. The value of underset(r=0)overset(20)sum(-1)^(r )(.^(50)C(r))/(r+2) is...

    Text Solution

    |

  17. The value of ""^(n)C(n)+""^(n+1)C(n)+""^(n+2)C(n)+….+""^(n+k)C(n) :

    Text Solution

    |

  18. The value of sum(r=0)^50 (.^(100)Cr.^(200)C(150+r)) is equal to

    Text Solution

    |

  19. The value of sum(r=0)^(2n)(-1)^(r)*(""^(2n)C(r))^(2) is equal to :

    Text Solution

    |

  20. Find the sum sum(i=0)^r.^(n1)C(r-i) .^(n2)Ci .

    Text Solution

    |