Home
Class 12
MATHS
If (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^(2)+...

If `(1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n)` where `a_(0)`, `a(1)`, `a(2)` are unequal and in A.P., then `(1)/(a_(n))` is equal to :

A

`(1)/((2n-1))`

B

`(1)/((2n+1))`

C

`(2)/(2n-1)`

D

`(1)/(n+2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the expression given: \[ (1 + x + x^2)^n = a_0 + a_1 x + a_2 x^2 + \ldots + a_{2n} x^{2n} \] where \( a_0, a_1, a_2 \) are unequal and in arithmetic progression (A.P.). ### Step 1: Rewrite the expression We can rewrite \( 1 + x + x^2 \) as follows: \[ 1 + x + x^2 = 1 + x(1 + x) \] This allows us to express \( (1 + x + x^2)^n \) in a more manageable form. ### Step 2: Use the Binomial Theorem We can use the Binomial Theorem to expand \( (1 + x + x^2)^n \). We can treat \( 1 + x + x^2 \) as a single term and expand it: \[ (1 + x + x^2)^n = \sum_{k=0}^{n} \binom{n}{k} (x + x^2)^k \] ### Step 3: Expand \( (x + x^2)^k \) Now we need to expand \( (x + x^2)^k \): \[ (x + x^2)^k = \sum_{j=0}^{k} \binom{k}{j} x^j (x^2)^{k-j} = \sum_{j=0}^{k} \binom{k}{j} x^{j + 2(k-j)} = \sum_{j=0}^{k} \binom{k}{j} x^{2k - j} \] ### Step 4: Collect coefficients From the above expansion, we can collect the coefficients of \( x^0, x^1, x^2, \ldots, x^{2n} \). The coefficients \( a_k \) can be expressed in terms of binomial coefficients. ### Step 5: Set up the A.P. condition Given that \( a_0, a_1, a_2 \) are in A.P., we have: \[ 2a_1 = a_0 + a_2 \] From our expansion, we know: - \( a_0 = 1 \) (the coefficient of \( x^0 \)) - \( a_1 = \binom{n}{1} \) - \( a_2 = \binom{n}{1} + \binom{n}{2} \) Substituting these into the A.P. condition gives: \[ 2 \binom{n}{1} = 1 + \left( \binom{n}{1} + \binom{n}{2} \right) \] ### Step 6: Solve for \( n \) This simplifies to: \[ 2n = 1 + n + \frac{n(n-1)}{2} \] Multiplying through by 2 to eliminate the fraction: \[ 4n = 2 + 2n + n(n-1) \] Rearranging gives: \[ n^2 - 2n - 2 = 0 \] ### Step 7: Use the quadratic formula Using the quadratic formula: \[ n = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-2)}}{2 \cdot 1} = \frac{2 \pm \sqrt{4 + 8}}{2} = \frac{2 \pm \sqrt{12}}{2} = 1 \pm \sqrt{3} \] ### Step 8: Determine valid \( n \) Since \( n \) must be a positive integer, we take \( n = 2 \). ### Step 9: Find \( a_n \) Now, we need to find \( a_n \): \[ a_2 = \binom{2}{1} + \binom{2}{2} = 2 + 1 = 3 \] ### Step 10: Calculate \( \frac{1}{a_n} \) Finally, we find: \[ \frac{1}{a_n} = \frac{1}{3} \] ### Conclusion Thus, the answer is: \[ \frac{1}{a_n} = \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 1|89 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

If (1+x+x)^(2n)=a_(0)+a_(1)x+a_(2)x^(2)+a_(2n)x^(2n) , then a_(1)+a_(3)+a_(5)+……..+a_(2n-1) is equal to

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then prove that a_(0)+a_(3)+a_(6)+a_(9)+……=3^(n-1)

Let n in N . If (1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2)+…….+a_(n)x^(n) and a_(n)-3,a_(n-2), a_(n-1) are in AP, then :

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1+3x-2x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2).+…+a_(20)x^(20) then prove that a_(0)+a_(1)+a_(2)+……+a_(20)=2^(10)

If log_(e )((1+x)/(1-x))=a_(0)+a_(1)x+a_(2)x^(2)+…oo then a_(1), a_(3), a_(5) are in

Let (1 + x^(2))^(2) (1 + x)^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … if a_(1),a_(2) " and " a_(3) are in A.P , the value of n is

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 2
  1. If C(0),C(1),C(2),…,C(n) are the binomial coefficients in the expansio...

    Text Solution

    |

  2. Find the sum of 1/(1!(n-1)!)+1/(3!(n-3)!)+1/(5!(n-5)!)+ ...,

    Text Solution

    |

  3. If (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^(2)+….+a(2n)x^(2n) where a(0), a(...

    Text Solution

    |

  4. For any positive integer (m,n) (with ngeqm), Let ((n),(m)) =.^nCm Prov...

    Text Solution

    |

  5. Prove that ""^(n)C(3)+""^(n)C(7) + ""^(n)C(11) + ...= 1/2{2^(n-1) -...

    Text Solution

    |

  6. If n in N, then sum(r=0)^(n) (-1)^(n) (""^(n)C(r))/(""^(r+2)C(r)) is ...

    Text Solution

    |

  7. The value of ((50),(0))((50),(1))+((50),(1))((50),(2)) + ...+ ((50),(...

    Text Solution

    |

  8. The value of sum(r=0)^(n) sum(p=0)^(r) ""^(n)C(r) . ""^(r)C(p) is...

    Text Solution

    |

  9. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |

  10. (1+x)=C(0)+C(1)x+….+C(n)x^(n) then the value of sumsum(0lerltslen)C(r)...

    Text Solution

    |

  11. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |

  12. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  13. Prove that sum(r=0)^ssum(s=1)^n^n Cs^n Cr=3^n-1.

    Text Solution

    |

  14. The value of underset(r=0)overset(20)sum(-1)^(r )(.^(50)C(r))/(r+2) is...

    Text Solution

    |

  15. The value of ""^(n)C(n)+""^(n+1)C(n)+""^(n+2)C(n)+….+""^(n+k)C(n) :

    Text Solution

    |

  16. The value of sum(r=0)^50 (.^(100)Cr.^(200)C(150+r)) is equal to

    Text Solution

    |

  17. The value of sum(r=0)^(2n)(-1)^(r)*(""^(2n)C(r))^(2) is equal to :

    Text Solution

    |

  18. Find the sum sum(i=0)^r.^(n1)C(r-i) .^(n2)Ci .

    Text Solution

    |

  19. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  20. sum(r=0)^n (-1)^r .^nCr (1+rln10)/(1+ln10^n)^r

    Text Solution

    |