Home
Class 12
MATHS
If n in N, then sum(r=0)^(n) (-1)^(n) (...

If n `in` N, then `sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r))` is equal to .

A

`(3!)/(2(n-3))`

B

`(3!)/(2(n+3))`

C

`(3!)/((n+3))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S = \sum_{r=0}^{n} (-1)^n \frac{nC_r}{(r+2)C_r} \] ### Step 1: Rewrite the binomial coefficients We start by rewriting the binomial coefficients in the summation. The binomial coefficient \( nC_r \) can be expressed as: \[ nC_r = \frac{n!}{r!(n-r)!} \] Similarly, the binomial coefficient \( (r+2)C_r \) can be expressed as: \[ (r+2)C_r = \frac{(r+2)!}{r! \cdot 2!} = \frac{(r+2)(r+1)}{2} \] ### Step 2: Substitute the coefficients into the sum Substituting these expressions into the sum gives: \[ S = \sum_{r=0}^{n} (-1)^n \frac{\frac{n!}{r!(n-r)!}}{\frac{(r+2)(r+1)}{2}} = \sum_{r=0}^{n} (-1)^n \frac{2n!}{(r+2)(r+1)r!(n-r)!} \] ### Step 3: Factor out constants Since \( (-1)^n \) and \( 2n! \) are constants with respect to the summation, we can factor them out: \[ S = 2(-1)^n n! \sum_{r=0}^{n} \frac{1}{(r+2)(r+1)} \frac{1}{(n-r)!} \] ### Step 4: Simplify the summation Now, we simplify the summation: \[ \sum_{r=0}^{n} \frac{1}{(r+2)(r+1)} \frac{1}{(n-r)!} \] This can be rewritten as: \[ \sum_{r=0}^{n} \frac{1}{(r+2)(r+1)} \cdot \frac{1}{(n-r)!} \] ### Step 5: Change the summation index To simplify the summation further, we can change the index of summation by letting \( k = n - r \). Then \( r = n - k \), and as \( r \) goes from \( 0 \) to \( n \), \( k \) goes from \( n \) to \( 0 \): \[ S = 2(-1)^n n! \sum_{k=0}^{n} \frac{1}{(n-k+2)(n-k+1)} \cdot \frac{1}{k!} \] ### Step 6: Recognize the pattern Now we can recognize that this summation can be related to the binomial theorem. The sum can be evaluated using the binomial expansion, and we can find that: \[ \sum_{k=0}^{n} \frac{1}{(n-k+2)(n-k+1)} \cdot \frac{1}{k!} = \frac{1}{(n+2)!} \] ### Step 7: Final expression Putting it all together, we have: \[ S = 2(-1)^n n! \cdot \frac{1}{(n+2)!} \] This simplifies to: \[ S = \frac{2(-1)^n}{(n+2)(n+1)} \] ### Final Answer Thus, the final answer is: \[ \frac{2(-1)^n}{(n+2)(n+1)} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 1|89 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

sum_(r=1)^(n) {sum_(r1=0)^(r-1) ""^(n)C_(r) ""^(r)C_(r_(1)) 2^(r1)} is equal to

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 2
  1. For any positive integer (m,n) (with ngeqm), Let ((n),(m)) =.^nCm Prov...

    Text Solution

    |

  2. Prove that ""^(n)C(3)+""^(n)C(7) + ""^(n)C(11) + ...= 1/2{2^(n-1) -...

    Text Solution

    |

  3. If n in N, then sum(r=0)^(n) (-1)^(n) (""^(n)C(r))/(""^(r+2)C(r)) is ...

    Text Solution

    |

  4. The value of ((50),(0))((50),(1))+((50),(1))((50),(2)) + ...+ ((50),(...

    Text Solution

    |

  5. The value of sum(r=0)^(n) sum(p=0)^(r) ""^(n)C(r) . ""^(r)C(p) is...

    Text Solution

    |

  6. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |

  7. (1+x)=C(0)+C(1)x+….+C(n)x^(n) then the value of sumsum(0lerltslen)C(r)...

    Text Solution

    |

  8. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |

  9. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  10. Prove that sum(r=0)^ssum(s=1)^n^n Cs^n Cr=3^n-1.

    Text Solution

    |

  11. The value of underset(r=0)overset(20)sum(-1)^(r )(.^(50)C(r))/(r+2) is...

    Text Solution

    |

  12. The value of ""^(n)C(n)+""^(n+1)C(n)+""^(n+2)C(n)+….+""^(n+k)C(n) :

    Text Solution

    |

  13. The value of sum(r=0)^50 (.^(100)Cr.^(200)C(150+r)) is equal to

    Text Solution

    |

  14. The value of sum(r=0)^(2n)(-1)^(r)*(""^(2n)C(r))^(2) is equal to :

    Text Solution

    |

  15. Find the sum sum(i=0)^r.^(n1)C(r-i) .^(n2)Ci .

    Text Solution

    |

  16. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  17. sum(r=0)^n (-1)^r .^nCr (1+rln10)/(1+ln10^n)^r

    Text Solution

    |

  18. If R = (sqrt(2) + 1)^(2n+1) and f = R - [R], where [ ] denote the ...

    Text Solution

    |

  19. Let ( 5 + 2 sqrt(6))^(n) = I + f , where n, I in N and 0 lt f lt ...

    Text Solution

    |

  20. If x= (7 + 4 sqrt(3))^(2n) = [x] + f , where n in N and 0 le f lt...

    Text Solution

    |