Home
Class 12
MATHS
(1+x)=C(0)+C(1)x+….+C(n)x^(n) then the v...

`(1+x)=C_(0)+C_(1)x+….+C_(n)x^(n)` then the value of `sumsum_(0lerltslen)C_(r)C_(s)` is equal to :

A

`n^2/2[2^(2n-2)-""^(2n-2)C_(n-1)]`

B

`1/4[2^(2n)-""^(2n)C_(n)]`

C

`1/2[2^(2n)+""^(2n)C_(n)]`

D

`1/2[2^(n)-""^(2n)C_(n)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the double sum \( \sum_{r=0}^{n} \sum_{s=r}^{n} C_r C_s \), where \( C_r \) and \( C_s \) are the binomial coefficients. ### Step-by-Step Solution: 1. **Understanding the Double Sum**: The expression \( \sum_{r=0}^{n} \sum_{s=r}^{n} C_r C_s \) indicates that for each fixed \( r \), we sum over \( s \) starting from \( r \) to \( n \). 2. **Rearranging the Summation**: We can switch the order of summation. The limits for \( s \) will go from \( 0 \) to \( n \), and for each \( s \), \( r \) will go from \( 0 \) to \( s \): \[ \sum_{r=0}^{n} \sum_{s=r}^{n} C_r C_s = \sum_{s=0}^{n} \sum_{r=0}^{s} C_r C_s \] 3. **Factor Out \( C_s \)**: Since \( C_s \) does not depend on \( r \), we can factor it out of the inner sum: \[ \sum_{s=0}^{n} C_s \sum_{r=0}^{s} C_r \] 4. **Using the Binomial Theorem**: The inner sum \( \sum_{r=0}^{s} C_r \) is equal to \( 2^s \) (by the binomial theorem, which states that the sum of the coefficients of \( (1+x)^s \) is \( 2^s \)): \[ \sum_{r=0}^{s} C_r = 2^s \] Therefore, we have: \[ \sum_{s=0}^{n} C_s 2^s \] 5. **Final Calculation**: The sum \( \sum_{s=0}^{n} C_s 2^s \) is equal to \( (1+2)^n = 3^n \) (again by the binomial theorem): \[ \sum_{s=0}^{n} C_s 2^s = 3^n \] 6. **Conclusion**: Thus, the value of the double sum \( \sum_{r=0}^{n} \sum_{s=r}^{n} C_r C_s \) is: \[ \sum_{r=0}^{n} \sum_{s=r}^{n} C_r C_s = 3^n \] ### Final Answer: The value of \( \sum_{r=0}^{n} \sum_{s=r}^{n} C_r C_s \) is \( 3^n \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 1|89 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r+s)(C_(r)+C_(s)) is :

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(C_(r)+C_(s))^(2) is :

The value of (sumsum)_(0leilejlen) (""^(n)C_(i) + ""^(n)C_(j)) is equal to

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

If (1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n then the value of sumsum_(0lt=iltjlt=n)C_iC_j is (A) 2^(2n-1)- .^(2n)C_(n/2) (B) .^(2n)C_n (C) 2^n (D) none of these

Find the value of (sumsum)_(0leiltjlen) (1+j)(""^(n)C_(i)+""^(n)C_(j)) .

Find the value of sumsum_(0leilejlt=n)c_i^n"" c_j^ndot

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following (sumsum)_(0leilt j le n)jC_(i)

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following (sumsum)_(0leile jlen)(i +j)(C_(i)pmC_(j) )^(2)

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 2
  1. The value of sum(r=0)^(n) sum(p=0)^(r) ""^(n)C(r) . ""^(r)C(p) is...

    Text Solution

    |

  2. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +…+ C(n) x^(n) , find the...

    Text Solution

    |

  3. (1+x)=C(0)+C(1)x+….+C(n)x^(n) then the value of sumsum(0lerltslen)C(r)...

    Text Solution

    |

  4. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |

  5. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  6. Prove that sum(r=0)^ssum(s=1)^n^n Cs^n Cr=3^n-1.

    Text Solution

    |

  7. The value of underset(r=0)overset(20)sum(-1)^(r )(.^(50)C(r))/(r+2) is...

    Text Solution

    |

  8. The value of ""^(n)C(n)+""^(n+1)C(n)+""^(n+2)C(n)+….+""^(n+k)C(n) :

    Text Solution

    |

  9. The value of sum(r=0)^50 (.^(100)Cr.^(200)C(150+r)) is equal to

    Text Solution

    |

  10. The value of sum(r=0)^(2n)(-1)^(r)*(""^(2n)C(r))^(2) is equal to :

    Text Solution

    |

  11. Find the sum sum(i=0)^r.^(n1)C(r-i) .^(n2)Ci .

    Text Solution

    |

  12. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  13. sum(r=0)^n (-1)^r .^nCr (1+rln10)/(1+ln10^n)^r

    Text Solution

    |

  14. If R = (sqrt(2) + 1)^(2n+1) and f = R - [R], where [ ] denote the ...

    Text Solution

    |

  15. Let ( 5 + 2 sqrt(6))^(n) = I + f , where n, I in N and 0 lt f lt ...

    Text Solution

    |

  16. If x= (7 + 4 sqrt(3))^(2n) = [x] + f , where n in N and 0 le f lt...

    Text Solution

    |

  17. If n gt 3, then xyz^(n)C(0)-(x-1)(y-1)(z-1)""^(n)C(1)+(x-2)(y-2)(z-2)"...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. If n gt 3, then xyz^(n)C(0)-(x-1)(y-1)(z-1)""^(n)C(1)+(x-2)(y-2)(z-2)"...

    Text Solution

    |

  20. Let n be positive integer such that, (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^...

    Text Solution

    |