Home
Class 12
MATHS
If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n...

If `(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n)`, then the value of `sumsum_(0lerltslen)(C_(r)+C_(s))^(2)` is :

A

`(n+1)""^(2n)C_(n)`

B

`(n+1)""^(2n)C_(n)+2^(n)`

C

`(n+1)""^(2n)C_(n)`

D

`(n-1)""^(2n)C_(n)+2^(2n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the double sum: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} (C_r + C_s)^2 \] where \( C_r \) represents the binomial coefficients from the expansion of \( (1+x)^n \). ### Step-by-Step Solution: 1. **Expand the Square**: \[ (C_r + C_s)^2 = C_r^2 + C_s^2 + 2C_rC_s \] 2. **Set Up the Double Sum**: Substitute the expansion into the double sum: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} (C_r + C_s)^2 = \sum_{r=0}^{n} \sum_{s=0}^{n} (C_r^2 + C_s^2 + 2C_rC_s) \] 3. **Separate the Sums**: This can be separated into three distinct sums: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} C_r^2 + \sum_{r=0}^{n} \sum_{s=0}^{n} C_s^2 + 2 \sum_{r=0}^{n} \sum_{s=0}^{n} C_rC_s \] Notice that \( \sum_{s=0}^{n} C_s^2 \) is the same as \( \sum_{r=0}^{n} C_r^2 \), so we can simplify: \[ = 2\sum_{r=0}^{n} C_r^2 + 2\left(\sum_{r=0}^{n} C_r\right)^2 \] 4. **Use Known Results**: - The sum of the binomial coefficients is: \[ \sum_{r=0}^{n} C_r = 2^n \] - The sum of the squares of the binomial coefficients is given by: \[ \sum_{r=0}^{n} C_r^2 = C_{2n} = \binom{2n}{n} \] 5. **Substitute the Results**: Substitute these results back into the equation: \[ = 2 \cdot \binom{2n}{n} + 2(2^n)^2 \] \[ = 2 \cdot \binom{2n}{n} + 2 \cdot 4^n \] 6. **Final Expression**: Thus, the final value of the double sum is: \[ \sum_{r=0}^{n} \sum_{s=0}^{n} (C_r + C_s)^2 = 2 \cdot \binom{2n}{n} + 2 \cdot 4^n \] ### Conclusion: The value of the double sum is: \[ 2 \cdot \binom{2n}{n} + 2 \cdot 4^n \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 1|89 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r+s)(C_(r)+C_(s)) is :

(1+x)=C_(0)+C_(1)x+….+C_(n)x^(n) then the value of sumsum_(0lerltslen)C_(r)C_(s) is equal to :

If (1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) +…+ C_(n) x^(n) , then the sum C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1)) is equal to

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following (sumsum)_(0leilt j le n)jC_(i)

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following (sumsum)_(0leile jlen)(i +j)(C_(i)pmC_(j) )^(2)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +…+ C_(n) x^(n) , find the values of the following . sum_(i=0)^(n) sum_(j=0)^(n) (i+j) C_(i) C_(j)

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1+x)^n=C_0+C_1x+C_2x^2+……..+C_nx^n then the value of sumsum_(0lt=iltjlt=n)C_iC_j is (A) 2^(2n-1)- .^(2n)C_(n/2) (B) .^(2n)C_n (C) 2^n (D) none of these

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following underset(0leile jlen)(sumsum)C_(i)C_(j)

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 2
  1. (1+x)=C(0)+C(1)x+….+C(n)x^(n) then the value of sumsum(0lerltslen)C(r)...

    Text Solution

    |

  2. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |

  3. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  4. Prove that sum(r=0)^ssum(s=1)^n^n Cs^n Cr=3^n-1.

    Text Solution

    |

  5. The value of underset(r=0)overset(20)sum(-1)^(r )(.^(50)C(r))/(r+2) is...

    Text Solution

    |

  6. The value of ""^(n)C(n)+""^(n+1)C(n)+""^(n+2)C(n)+….+""^(n+k)C(n) :

    Text Solution

    |

  7. The value of sum(r=0)^50 (.^(100)Cr.^(200)C(150+r)) is equal to

    Text Solution

    |

  8. The value of sum(r=0)^(2n)(-1)^(r)*(""^(2n)C(r))^(2) is equal to :

    Text Solution

    |

  9. Find the sum sum(i=0)^r.^(n1)C(r-i) .^(n2)Ci .

    Text Solution

    |

  10. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  11. sum(r=0)^n (-1)^r .^nCr (1+rln10)/(1+ln10^n)^r

    Text Solution

    |

  12. If R = (sqrt(2) + 1)^(2n+1) and f = R - [R], where [ ] denote the ...

    Text Solution

    |

  13. Let ( 5 + 2 sqrt(6))^(n) = I + f , where n, I in N and 0 lt f lt ...

    Text Solution

    |

  14. If x= (7 + 4 sqrt(3))^(2n) = [x] + f , where n in N and 0 le f lt...

    Text Solution

    |

  15. If n gt 3, then xyz^(n)C(0)-(x-1)(y-1)(z-1)""^(n)C(1)+(x-2)(y-2)(z-2)"...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. If n gt 3, then xyz^(n)C(0)-(x-1)(y-1)(z-1)""^(n)C(1)+(x-2)(y-2)(z-2)"...

    Text Solution

    |

  18. Let n be positive integer such that, (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^...

    Text Solution

    |

  19. Find the value of underset(0leiltjlen)(sumsum)(.^(n)C(i)+.^(n)C(j)).

    Text Solution

    |

  20. If (1+x+x^(2))^(n) = a(0) + a(1)x+ a(2)x^(2) + "……" a(2n)x^(2n), find...

    Text Solution

    |