Home
Class 12
MATHS
The value of ""^(n)C(n)+""^(n+1)C(n)+""^...

The value of `""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n)` :

A

`""^(n+k+1)C_(n+1)`

B

`""^(n+k)C_(n)`

C

`""^(n+k)C_(n+1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of the expression \( \binom{n}{n} + \binom{n+1}{n} + \binom{n+2}{n} + \ldots + \binom{n+k}{n} \), we will utilize the properties of binomial coefficients. ### Step-by-Step Solution: 1. **Identify the Terms**: The expression we need to evaluate is: \[ \binom{n}{n} + \binom{n+1}{n} + \binom{n+2}{n} + \ldots + \binom{n+k}{n} \] 2. **Use the Property of Binomial Coefficients**: We know the property: \[ \binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r} \] We will apply this property iteratively to combine the terms. 3. **Start with the First Two Terms**: The first two terms are: \[ \binom{n}{n} + \binom{n+1}{n} \] Using the property, we can combine these: \[ \binom{n}{n} + \binom{n+1}{n} = \binom{n+1}{n+1} \] 4. **Continue Combining Terms**: Now, we will include the next term: \[ \binom{n+2}{n} \] So now we have: \[ \binom{n+1}{n+1} + \binom{n+2}{n} \] Applying the property again: \[ \binom{n+1}{n+1} + \binom{n+2}{n} = \binom{n+2}{n+1} \] 5. **Repeat the Process**: Continue this process for all terms up to \( \binom{n+k}{n} \): - Combine \( \binom{n+3}{n} \) with \( \binom{n+2}{n+1} \) to get \( \binom{n+3}{n+1} \). - Combine \( \binom{n+4}{n} \) with \( \binom{n+3}{n+1} \) to get \( \binom{n+4}{n+1} \). - Continue this until you reach \( \binom{n+k}{n} \). 6. **Final Combination**: After combining all terms, we will end up with: \[ \binom{n+k+1}{n+1} \] ### Conclusion: Thus, the final value of the expression \( \binom{n}{n} + \binom{n+1}{n} + \binom{n+2}{n} + \ldots + \binom{n+k}{n} \) is: \[ \binom{n+k+1}{n+1} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 1|89 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

The arithmetic mean of ""^(n)C_(0),""^(n)C_(1),""^(n)C_(2), ..., ""^(n)C_(n) , is

The value of .^(n)C_(1)+.^(n+1)C_(2)+.^(n+2)C_(3)+"….."+.^(n+m-1)C_(m) is equal to a. .^(m+n)C_(n) - 1 b. .^(m+n)C_(n-1) c. .^(m)C_(1) + ^(m+1)C_(2) + ^(m+2)C_(3) + "…." + ^(m+n-1)C_(n) d. .^(m+n)C_(m) - 1

If the value of (n + 2) . ""^(n)C_(0) *2^(n+1) - (n+1) * ""^(n)C_(1)*2^(n) + n* ""^(n)C_(2) * 2^(n-1) -... is equal to k(n +1) , the value of k is .

If the value of "^(n)C_(0)+2*^(n)C_(1)+3*^(n)C_(2)+...+(n+1)*^(n)C_(n)=576 , then n is (a) 7 (b) 5 (c) 6 (d) 9

If n is even and ""^(n)C_(0)lt""^(n)C_(1) lt ""^(n)C_(2) lt ....lt ""^(n)C_(r) gt ""^(n)C_(r+1) gt""^(n)C_(r+2) gt......gt""^(n)C_(n) , then, r=

If .^(n)C_(8) = .^(n)C_(2) , find .^(n)C_(2) .

Let S_(n)=""^(n)C_(0)""^(n)C_(1)+""^(n)C_(1)""^(n)C_(2)+…..+""^(n)C_(n-1)""^(n)C_(n). "If" (S_(n+1))/(S_(n))=(15)/(4) , find the sum of all possible values of n (n in N)

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

The A.M. of the series .^(n)C_(0), .^(n)C_(1), .^(n)C_(2),….,.^(n)C_(n) is

If S=Sigma_(n=1)^(oo) (""^(n)C_(0)+""^(n)C_(1)+""^(n)c_(2)+..+""^(n)C_(n))/(""^(n)P_(n)) then S equals

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 2
  1. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |

  2. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  3. Prove that sum(r=0)^ssum(s=1)^n^n Cs^n Cr=3^n-1.

    Text Solution

    |

  4. The value of underset(r=0)overset(20)sum(-1)^(r )(.^(50)C(r))/(r+2) is...

    Text Solution

    |

  5. The value of ""^(n)C(n)+""^(n+1)C(n)+""^(n+2)C(n)+….+""^(n+k)C(n) :

    Text Solution

    |

  6. The value of sum(r=0)^50 (.^(100)Cr.^(200)C(150+r)) is equal to

    Text Solution

    |

  7. The value of sum(r=0)^(2n)(-1)^(r)*(""^(2n)C(r))^(2) is equal to :

    Text Solution

    |

  8. Find the sum sum(i=0)^r.^(n1)C(r-i) .^(n2)Ci .

    Text Solution

    |

  9. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  10. sum(r=0)^n (-1)^r .^nCr (1+rln10)/(1+ln10^n)^r

    Text Solution

    |

  11. If R = (sqrt(2) + 1)^(2n+1) and f = R - [R], where [ ] denote the ...

    Text Solution

    |

  12. Let ( 5 + 2 sqrt(6))^(n) = I + f , where n, I in N and 0 lt f lt ...

    Text Solution

    |

  13. If x= (7 + 4 sqrt(3))^(2n) = [x] + f , where n in N and 0 le f lt...

    Text Solution

    |

  14. If n gt 3, then xyz^(n)C(0)-(x-1)(y-1)(z-1)""^(n)C(1)+(x-2)(y-2)(z-2)"...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. If n gt 3, then xyz^(n)C(0)-(x-1)(y-1)(z-1)""^(n)C(1)+(x-2)(y-2)(z-2)"...

    Text Solution

    |

  17. Let n be positive integer such that, (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^...

    Text Solution

    |

  18. Find the value of underset(0leiltjlen)(sumsum)(.^(n)C(i)+.^(n)C(j)).

    Text Solution

    |

  19. If (1+x+x^(2))^(n) = a(0) + a(1)x+ a(2)x^(2) + "……" a(2n)x^(2n), find...

    Text Solution

    |

  20. Find the value of 1/(81^n)-(10)/(81^n)^(2n)C1+(10^2)/(81^n)^(2n)C2-(10...

    Text Solution

    |