Home
Class 12
MATHS
The value of sum(r=0)^50 (.^(100)Cr.^(20...

The value of `sum_(r=0)^50 (.^(100)C_r.^(200)C_(150+r))` is equal to

A

`""^(300)C_(50)`

B

`""^(100)C_(50)*""^(200)C_(150)`

C

`""^(100)C_(50)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S = \sum_{r=0}^{50} \binom{100}{r} \binom{200}{150+r} \] ### Step 1: Understand the Binomial Coefficients The binomial coefficient \(\binom{n}{k}\) represents the number of ways to choose \(k\) successes in \(n\) trials. In our case, we have two binomial coefficients: one from \(100\) and the other from \(200\). ### Step 2: Apply the Binomial Theorem We can use the Binomial Theorem, which states that: \[ (1+x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k \] We will apply this theorem to both \( (1+x)^{100} \) and \( (1+x)^{200} \). ### Step 3: Expand the Binomials 1. Expand \( (1+x)^{100} \): \[ (1+x)^{100} = \sum_{r=0}^{100} \binom{100}{r} x^r \] 2. Expand \( (1+x)^{200} \): \[ (1+x)^{200} = \sum_{s=0}^{200} \binom{200}{s} x^s \] ### Step 4: Combine the Expansions Now, we want to find the coefficient of \(x^{50}\) in the product of these two expansions: \[ (1+x)^{100} \cdot (1+x)^{200} = (1+x)^{300} \] ### Step 5: Identify the Coefficient The coefficient of \(x^{50}\) in \((1+x)^{300}\) can be found using the binomial coefficient: \[ \text{Coefficient of } x^{50} \text{ in } (1+x)^{300} = \binom{300}{50} \] ### Conclusion Thus, the value of the sum \(S\) is: \[ S = \binom{300}{50} \] ### Final Answer The value of \( \sum_{r=0}^{50} \binom{100}{r} \binom{200}{150+r} \) is equal to \( \binom{300}{50} \). ---
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 1|89 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(20)(-1)^(r )(""^(50)C_(r))/(r+2) is equal to

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

The value of sum_(r=0)^(50)(-1)^r((50)C_r)/(r+2) is equal to a . 1/(50xx51) b. 1/(52xx50) c. 1/(52xx51) d. none of these

The value of sum_(r=0)^(20)r(20-r) (.^(20) C_r)^2 is equal to a. 400^(39)C_(20) b. 400^(40)C_(19) c. 400^(39)C_(19) d. 400^(38)C_(20)

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

The value of sum_(r=2)^(10) ""^(r)C_(2).""^(10)C_(r) is

The value of sum_(r=0)^(10)r^(10)C_r3^r(-2)^(10-r) is 20 b. 10 c. 300 d. 30

the value of'"" (40)C_(31)+sum_(r=0)'""^(40+r)C_(10-r) is equal to

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 2
  1. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |

  2. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  3. Prove that sum(r=0)^ssum(s=1)^n^n Cs^n Cr=3^n-1.

    Text Solution

    |

  4. The value of underset(r=0)overset(20)sum(-1)^(r )(.^(50)C(r))/(r+2) is...

    Text Solution

    |

  5. The value of ""^(n)C(n)+""^(n+1)C(n)+""^(n+2)C(n)+….+""^(n+k)C(n) :

    Text Solution

    |

  6. The value of sum(r=0)^50 (.^(100)Cr.^(200)C(150+r)) is equal to

    Text Solution

    |

  7. The value of sum(r=0)^(2n)(-1)^(r)*(""^(2n)C(r))^(2) is equal to :

    Text Solution

    |

  8. Find the sum sum(i=0)^r.^(n1)C(r-i) .^(n2)Ci .

    Text Solution

    |

  9. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  10. sum(r=0)^n (-1)^r .^nCr (1+rln10)/(1+ln10^n)^r

    Text Solution

    |

  11. If R = (sqrt(2) + 1)^(2n+1) and f = R - [R], where [ ] denote the ...

    Text Solution

    |

  12. Let ( 5 + 2 sqrt(6))^(n) = I + f , where n, I in N and 0 lt f lt ...

    Text Solution

    |

  13. If x= (7 + 4 sqrt(3))^(2n) = [x] + f , where n in N and 0 le f lt...

    Text Solution

    |

  14. If n gt 3, then xyz^(n)C(0)-(x-1)(y-1)(z-1)""^(n)C(1)+(x-2)(y-2)(z-2)"...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. If n gt 3, then xyz^(n)C(0)-(x-1)(y-1)(z-1)""^(n)C(1)+(x-2)(y-2)(z-2)"...

    Text Solution

    |

  17. Let n be positive integer such that, (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^...

    Text Solution

    |

  18. Find the value of underset(0leiltjlen)(sumsum)(.^(n)C(i)+.^(n)C(j)).

    Text Solution

    |

  19. If (1+x+x^(2))^(n) = a(0) + a(1)x+ a(2)x^(2) + "……" a(2n)x^(2n), find...

    Text Solution

    |

  20. Find the value of 1/(81^n)-(10)/(81^n)^(2n)C1+(10^2)/(81^n)^(2n)C2-(10...

    Text Solution

    |