Home
Class 12
MATHS
The value of sum(r=0)^(2n)(-1)^(r)*(""^(...

The value of `sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2)` is equal to :

A

`""^(4n)C_(2n)`

B

`""^(2n)C_(n)`

C

`(-1)^(n)*""^(2n)C_(n)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S = \sum_{r=0}^{2n} (-1)^r \binom{2n}{r}^2 \] ### Step 1: Understanding the Binomial Coefficient The binomial coefficient \(\binom{2n}{r}\) represents the number of ways to choose \(r\) elements from a set of \(2n\) elements. The square of this coefficient, \(\binom{2n}{r}^2\), can be interpreted combinatorially as the number of ways to choose \(r\) elements from two independent sets of \(2n\) elements. ### Step 2: Applying the Binomial Theorem We can use the binomial theorem, which states that: \[ (1 + x)^{2n} = \sum_{r=0}^{2n} \binom{2n}{r} x^r \] ### Step 3: Evaluating the Alternating Sum To evaluate the alternating sum, we can substitute \(x = -1\) into the binomial expansion: \[ (1 - 1)^{2n} = 0 = \sum_{r=0}^{2n} \binom{2n}{r} (-1)^r \] This shows that the sum of the binomial coefficients with alternating signs is zero. ### Step 4: Squaring the Binomial Coefficients Now we need to consider the square of the binomial coefficients. We can express the sum \(S\) in terms of generating functions. The generating function for \(\binom{2n}{r}\) is: \[ (1 + x)^{2n} (1 - x)^{2n} = (1 - x^2)^{2n} \] ### Step 5: Coefficient Extraction The coefficient of \(x^{2n}\) in the expansion of \((1 - x^2)^{2n}\) gives us the required sum. The expansion can be written as: \[ (1 - x^2)^{2n} = \sum_{k=0}^{2n} \binom{2n}{k} (-1)^k x^{2k} \] To find the coefficient of \(x^{2n}\), we need to find the term where \(2k = 2n\), which implies \(k = n\). ### Step 6: Final Calculation Thus, the coefficient of \(x^{2n}\) in \((1 - x^2)^{2n}\) is: \[ \binom{2n}{n} (-1)^n \] ### Conclusion Therefore, the value of the sum is: \[ S = \binom{2n}{n} (-1)^n \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 1|89 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(20)(-1)^(r )(""^(50)C_(r))/(r+2) is equal to

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

The value of sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r is

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 2
  1. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |

  2. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  3. Prove that sum(r=0)^ssum(s=1)^n^n Cs^n Cr=3^n-1.

    Text Solution

    |

  4. The value of underset(r=0)overset(20)sum(-1)^(r )(.^(50)C(r))/(r+2) is...

    Text Solution

    |

  5. The value of ""^(n)C(n)+""^(n+1)C(n)+""^(n+2)C(n)+….+""^(n+k)C(n) :

    Text Solution

    |

  6. The value of sum(r=0)^50 (.^(100)Cr.^(200)C(150+r)) is equal to

    Text Solution

    |

  7. The value of sum(r=0)^(2n)(-1)^(r)*(""^(2n)C(r))^(2) is equal to :

    Text Solution

    |

  8. Find the sum sum(i=0)^r.^(n1)C(r-i) .^(n2)Ci .

    Text Solution

    |

  9. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  10. sum(r=0)^n (-1)^r .^nCr (1+rln10)/(1+ln10^n)^r

    Text Solution

    |

  11. If R = (sqrt(2) + 1)^(2n+1) and f = R - [R], where [ ] denote the ...

    Text Solution

    |

  12. Let ( 5 + 2 sqrt(6))^(n) = I + f , where n, I in N and 0 lt f lt ...

    Text Solution

    |

  13. If x= (7 + 4 sqrt(3))^(2n) = [x] + f , where n in N and 0 le f lt...

    Text Solution

    |

  14. If n gt 3, then xyz^(n)C(0)-(x-1)(y-1)(z-1)""^(n)C(1)+(x-2)(y-2)(z-2)"...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. If n gt 3, then xyz^(n)C(0)-(x-1)(y-1)(z-1)""^(n)C(1)+(x-2)(y-2)(z-2)"...

    Text Solution

    |

  17. Let n be positive integer such that, (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^...

    Text Solution

    |

  18. Find the value of underset(0leiltjlen)(sumsum)(.^(n)C(i)+.^(n)C(j)).

    Text Solution

    |

  19. If (1+x+x^(2))^(n) = a(0) + a(1)x+ a(2)x^(2) + "……" a(2n)x^(2n), find...

    Text Solution

    |

  20. Find the value of 1/(81^n)-(10)/(81^n)^(2n)C1+(10^2)/(81^n)^(2n)C2-(10...

    Text Solution

    |