Home
Class 12
MATHS
If R = (sqrt(2) + 1)^(2n+1) and f = R - ...

If R = `(sqrt(2) + 1)^(2n+1) and f = R - [R]`, where [ ]
denote the greatest integer function, then [R] equal (a) `f+1/f` (b) `f-1/f` (c) `1/f-f` (d) None of these

A

`f+1/f`

B

`f-1/f`

C

`1/f-f`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \([R]\) where \(R = (\sqrt{2} + 1)^{2n + 1}\) and \(f = R - [R]\). ### Step-by-Step Solution: 1. **Define \(R\)**: \[ R = (\sqrt{2} + 1)^{2n + 1} \] 2. **Define \(g\)**: We can also express \(g\) as: \[ g = (\sqrt{2} - 1)^{2n + 1} \] 3. **Relate \(R\) and \(g\)**: Notice that: \[ R - g = (\sqrt{2} + 1)^{2n + 1} - (\sqrt{2} - 1)^{2n + 1} \] This expression can be simplified using the binomial theorem. 4. **Using the Binomial Theorem**: Expanding both terms using the binomial theorem: \[ R = \sum_{k=0}^{2n+1} \binom{2n+1}{k} (\sqrt{2})^k (1)^{2n+1-k} \] \[ g = \sum_{k=0}^{2n+1} \binom{2n+1}{k} (\sqrt{2})^k (-1)^{2n+1-k} \] 5. **Combine the two expansions**: The odd indexed terms in \(R\) and \(g\) will cancel out, leaving us with: \[ R - g = \text{(even integer)} \] 6. **Determine \(f\)**: Since \(f = R - [R]\), we can express \(f\) as: \[ f = R - g + g - [R] \] Since \(g\) is a very small positive number (as \((\sqrt{2} - 1) < 1\)), we can say: \[ f \approx R - [R] \] 7. **Find \([R]\)**: From the relationship \(R - g\) being an even integer, we can conclude that: \[ [R] = f - \frac{1}{f} \] 8. **Final Expression**: Thus, we can express \([R]\) as: \[ [R] = f - \frac{1}{f} \] ### Conclusion: The value of \([R]\) is: \[ \boxed{f - \frac{1}{f}} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 1|89 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

If (6 sqrt6+14)^(2n+1)=R and F=[R] , where [R] denotes the greatest integer less than or equal to R thwn RF=

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

If f(x) =2 [x]+ cos x , then f: R ->R is: (where [ ] denotes greatest integer function)

Let f(x) = 1 + |x|,x = -1, where [*] denotes the greatest integer function.Then f { f (- 2.3)} is equal to

Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greatest integer function).Then f^-1 (x) is

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

Let f:(4,6)vec(6,8) be a function defined by f(x)=x+[x/2]dotw h e r e[dot] denotes the greatest integer function, then f^(-1)(x) is equal to (A) x-2 (B) x-[x//2] (C) -x-2 (D) none of these

If f: R to R is defined by f(x)=x-[x]-(1)/(2) for all x in R , where [x] denotes the greatest integer function, then {x in R: f(x)=(1)/(2)} is equal to

If the function f: R->R be such that f(x) = x-[x], where [x] denotes the greatest integer less than or equal to x, then f^-1(x) is

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function)

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 2
  1. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |

  2. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  3. Prove that sum(r=0)^ssum(s=1)^n^n Cs^n Cr=3^n-1.

    Text Solution

    |

  4. The value of underset(r=0)overset(20)sum(-1)^(r )(.^(50)C(r))/(r+2) is...

    Text Solution

    |

  5. The value of ""^(n)C(n)+""^(n+1)C(n)+""^(n+2)C(n)+….+""^(n+k)C(n) :

    Text Solution

    |

  6. The value of sum(r=0)^50 (.^(100)Cr.^(200)C(150+r)) is equal to

    Text Solution

    |

  7. The value of sum(r=0)^(2n)(-1)^(r)*(""^(2n)C(r))^(2) is equal to :

    Text Solution

    |

  8. Find the sum sum(i=0)^r.^(n1)C(r-i) .^(n2)Ci .

    Text Solution

    |

  9. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  10. sum(r=0)^n (-1)^r .^nCr (1+rln10)/(1+ln10^n)^r

    Text Solution

    |

  11. If R = (sqrt(2) + 1)^(2n+1) and f = R - [R], where [ ] denote the ...

    Text Solution

    |

  12. Let ( 5 + 2 sqrt(6))^(n) = I + f , where n, I in N and 0 lt f lt ...

    Text Solution

    |

  13. If x= (7 + 4 sqrt(3))^(2n) = [x] + f , where n in N and 0 le f lt...

    Text Solution

    |

  14. If n gt 3, then xyz^(n)C(0)-(x-1)(y-1)(z-1)""^(n)C(1)+(x-2)(y-2)(z-2)"...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. If n gt 3, then xyz^(n)C(0)-(x-1)(y-1)(z-1)""^(n)C(1)+(x-2)(y-2)(z-2)"...

    Text Solution

    |

  17. Let n be positive integer such that, (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^...

    Text Solution

    |

  18. Find the value of underset(0leiltjlen)(sumsum)(.^(n)C(i)+.^(n)C(j)).

    Text Solution

    |

  19. If (1+x+x^(2))^(n) = a(0) + a(1)x+ a(2)x^(2) + "……" a(2n)x^(2n), find...

    Text Solution

    |

  20. Find the value of 1/(81^n)-(10)/(81^n)^(2n)C1+(10^2)/(81^n)^(2n)C2-(10...

    Text Solution

    |