Home
Class 12
MATHS
Let n be positive integer such that, (1+...

Let n be positive integer such that, `(1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n)`, then `a_(r)` is :

A

`(r+1)a_(r+1)`

B

`(r-1)a_(r+1)`

C

`(2r+1)a_(r+1)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the coefficients \( a_r \) in the expansion of \( (1 + x + x^2)^n \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \( (1 + x + x^2)^n \). This can be expanded using the binomial theorem, but we will analyze it in a different way to find the coefficients. 2. **Substituting \( x \)**: We will substitute \( x \) with \( \frac{1}{x} \) in the original expression: \[ (1 + x + x^2)^n = (1 + \frac{1}{x} + \frac{1}{x^2})^n \] 3. **Rewriting the Expression**: This gives us: \[ (1 + \frac{1}{x} + \frac{1}{x^2})^n = \left(\frac{x^2 + x + 1}{x^2}\right)^n = \frac{(x^2 + x + 1)^n}{x^{2n}} \] 4. **Equating the Two Forms**: We can express the expansion of \( (1 + x + x^2)^n \) in terms of its coefficients: \[ (1 + x + x^2)^n = a_0 + a_1 x + a_2 x^2 + \ldots + a_{2n} x^{2n} \] and from our substitution: \[ (1 + \frac{1}{x} + \frac{1}{x^2})^n = a_0 + a_1 \frac{1}{x} + a_2 \frac{1}{x^2} + \ldots + a_{2n} \frac{1}{x^{2n}} \] 5. **Multiplying by \( x^{2n} \)**: Now, multiply both sides by \( x^{2n} \): \[ (1 + x + x^2)^n \cdot x^{2n} = a_0 x^{2n} + a_1 x^{2n-1} + a_2 x^{2n-2} + \ldots + a_{2n} \] 6. **Setting Up the Equations**: From the two expansions, we can equate the coefficients: \[ a_r = a_{2n - r} \] for \( r = 0, 1, 2, \ldots, 2n \). 7. **Conclusion**: This means that the coefficients \( a_r \) are symmetric around \( n \). Specifically, \( a_r \) is equal to \( a_{2n - r} \). ### Final Result: Thus, the value of \( a_r \) is given by: \[ a_r = a_{2n - r} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 1|89 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

If (1+x+x)^(2n)=a_(0)+a_(1)x+a_(2)x^(2)+a_(2n)x^(2n) , then a_(1)+a_(3)+a_(5)+……..+a_(2n-1) is equal to

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then prove that a_(0)+a_(3)+a_(6)+a_(9)+……=3^(n-1)

Let n be a positive integer and (1+x+x^2)^n=a_0+a_1x+ . . . . +a_(2n)x^(2n)dot Show that a_(02) -a_(12)+a_(22)+. . . +a _(2n2)=a_n

If the expansion in power of x of the function (1)/(( 1 - ax)(1 - bx)) is a_(0) + a_(1) x + a_(2) x^(2) + a_(3) x^(3) + …, then a_(n) is

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . Which of the following is true for 1 lt r lt 2n

Let n in N . If (1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2)+…….+a_(n)x^(n) and a_(n)-3,a_(n-2), a_(n-1) are in AP, then :

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

VMC MODULES ENGLISH-BINOMIAL THEOREM-LEVEL 2
  1. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |

  2. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+….+C(n)x^(n), then the value of sums...

    Text Solution

    |

  3. Prove that sum(r=0)^ssum(s=1)^n^n Cs^n Cr=3^n-1.

    Text Solution

    |

  4. The value of underset(r=0)overset(20)sum(-1)^(r )(.^(50)C(r))/(r+2) is...

    Text Solution

    |

  5. The value of ""^(n)C(n)+""^(n+1)C(n)+""^(n+2)C(n)+….+""^(n+k)C(n) :

    Text Solution

    |

  6. The value of sum(r=0)^50 (.^(100)Cr.^(200)C(150+r)) is equal to

    Text Solution

    |

  7. The value of sum(r=0)^(2n)(-1)^(r)*(""^(2n)C(r))^(2) is equal to :

    Text Solution

    |

  8. Find the sum sum(i=0)^r.^(n1)C(r-i) .^(n2)Ci .

    Text Solution

    |

  9. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)) , find the value of sum(...

    Text Solution

    |

  10. sum(r=0)^n (-1)^r .^nCr (1+rln10)/(1+ln10^n)^r

    Text Solution

    |

  11. If R = (sqrt(2) + 1)^(2n+1) and f = R - [R], where [ ] denote the ...

    Text Solution

    |

  12. Let ( 5 + 2 sqrt(6))^(n) = I + f , where n, I in N and 0 lt f lt ...

    Text Solution

    |

  13. If x= (7 + 4 sqrt(3))^(2n) = [x] + f , where n in N and 0 le f lt...

    Text Solution

    |

  14. If n gt 3, then xyz^(n)C(0)-(x-1)(y-1)(z-1)""^(n)C(1)+(x-2)(y-2)(z-2)"...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. If n gt 3, then xyz^(n)C(0)-(x-1)(y-1)(z-1)""^(n)C(1)+(x-2)(y-2)(z-2)"...

    Text Solution

    |

  17. Let n be positive integer such that, (1+x+x^(2))^(n)=a(0)+a(1)x+a(2)x^...

    Text Solution

    |

  18. Find the value of underset(0leiltjlen)(sumsum)(.^(n)C(i)+.^(n)C(j)).

    Text Solution

    |

  19. If (1+x+x^(2))^(n) = a(0) + a(1)x+ a(2)x^(2) + "……" a(2n)x^(2n), find...

    Text Solution

    |

  20. Find the value of 1/(81^n)-(10)/(81^n)^(2n)C1+(10^2)/(81^n)^(2n)C2-(10...

    Text Solution

    |