Home
Class 12
MATHS
Let x=(5+2sqrt6)^(n),ninN, then find the...

Let `x=(5+2sqrt6)^(n),ninN`, then find the value of `x-x^(2)+x[x]`, where [.] denotes greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the expression given in the question. ### Step 1: Define the variables Let \( x = (5 + 2\sqrt{6})^n \), where \( n \in \mathbb{N} \). ### Step 2: Introduce another variable Let \( y = (5 - 2\sqrt{6})^n \). Note that \( 5 - 2\sqrt{6} \) is a small positive number (approximately 0.1), so \( y \) will be a very small positive number when \( n \) is a natural number. ### Step 3: Calculate \( x + y \) We can calculate \( x + y \): \[ x + y = (5 + 2\sqrt{6})^n + (5 - 2\sqrt{6})^n \] Using the Binomial Theorem, we can expand both terms: \[ x + y = \sum_{k=0}^{n} \binom{n}{k} 5^{n-k} (2\sqrt{6})^k + \sum_{k=0}^{n} \binom{n}{k} 5^{n-k} (-2\sqrt{6})^k \] The odd powers of \( 2\sqrt{6} \) will cancel out, leaving: \[ x + y = 2 \sum_{k=0, \text{ even}}^{n} \binom{n}{k} 5^{n-k} (2\sqrt{6})^k \] This sum is an integer, so we denote it as \( I \). ### Step 4: Calculate \( xy \) Now, we calculate \( xy \): \[ xy = (5 + 2\sqrt{6})^n (5 - 2\sqrt{6})^n = ((5)^2 - (2\sqrt{6})^2)^n = (25 - 24)^n = 1^n = 1 \] ### Step 5: Relate \( x \) and \( y \) From the above, we have: \[ x + y = I \quad \text{and} \quad xy = 1 \] This gives us a quadratic equation: \[ t^2 - It + 1 = 0 \] where \( t = x \) or \( t = y \). ### Step 6: Use the greatest integer function The greatest integer function \( [x] \) can be expressed as: \[ [x] = I - y \quad \text{(since \( y \) is very small)} \] ### Step 7: Calculate \( x - x^2 + x[x] \) We need to find: \[ x - x^2 + x[x] \] Substituting for \( [x] \): \[ x - x^2 + x(I - y) \] This simplifies to: \[ x - x^2 + xI - xy \] Since \( xy = 1 \): \[ x - x^2 + xI - 1 \] Rearranging gives: \[ x + xI - x^2 - 1 \] ### Step 8: Substitute \( I \) Recall that \( I = x + y \), thus: \[ x + x(x + y) - x^2 - 1 = x + x^2 + xy - x^2 - 1 \] This simplifies to: \[ x + 1 - 1 = x \] ### Final Result Thus, the value of \( x - x^2 + x[x] \) is: \[ \boxed{x} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise JEE Archive|56 Videos
  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise LEVEL 2|50 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.