Home
Class 12
MATHS
If n and k are positive integers, show t...

If `n` and `k` are positive integers, show that `2^k(nC 0)(n k)-2^(k-1)(nC1)(n-1Ck-1)+2^(k-2)(nC2)((n-2k-2))_dot-...+ (-1)^k(nCk)+(n-kC0)=(nC k)w h e r e(n C k)` stands for `^n C_kdot`

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

If n and k are positive integers, show that 2^k( .^n C_0)(.^n C_k)-2^(k-1)(.^n C_1)(.^(n-1) C_k-1)+2^(k-2)(.^n C_2)((n-2k-2))_dot-...+ (-1)^k(^n C_k)+(.^(n-k) C_0)=(.^n C_k)w h e r e(.^n C_k) stands for .^n C_k.

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Show that: .^nC_(n-r)+3.^nC_(n-r+1)+3.^nC_(n-r+2)+^nC_(n-r+3)=^(n+3)C_r .

Show that lim_(nrarr infty) sum_(k=0)^(n)(""^(n)Ck)/(n^k(k+3))=e-2

If k a n d n are positive integers and s_k=1^k+2^k+3^k++n^k , then prove that sum_(r=1)^m^(m+1)C_r s_r=(n+1)^(m+1)-(n+1)dot

If n is a positive integer then (1+x)^n=^nC_0 x^0+^nC_1 x^1+^nC_2^2+………+^nC_rx^r= sum _(r=0)^n ^nC_rx^r and (1-x)^n= ^nC_0x^0-^nC_1 x^1 +^nC_2-^nC_3x^3+………+(-1)^n ^nC_nx^n=sum_(r=0)^n (-1)^r ^nC_r x^r On the basis of above information answer the following question: If n is a positive integer then 1/((49)^n) - 8/((49)^n)(^(2n)C_1)+8^2/((49)^n)( ^(2n)C_2)- 8^3/((49)^n)(^(2n)c_3)+......+8^(2n)/((49)^n)= (A) -1 (B) 1 (C) (64/49)^n (D) none of these

If n is a positive integer and C_(k)=""^(n)C_(k) , then the value of sum_(k=1)^(n)k^(3)((C_(k))/(C_(k-1)))^(2) is :

If (nC_0)/(2^n)+2.(nC_1)/2^n+3.(nC_2)/2^n+....(n+1)(nC_n)/2^n=16 then the value of 'n' is

Find the value lim_(n rarr oo) sum_(k=2)^(n) cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))

If the value of (n + 2) . ""^(n)C_(0) *2^(n+1) - (n+1) * ""^(n)C_(1)*2^(n) + n* ""^(n)C_(2) * 2^(n-1) -... is equal to k(n +1) , the value of k is .

VMC MODULES ENGLISH-BINOMIAL THEOREM-JEE Archive
  1. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  2. If ^n-1Cr=(k^2-3)^n C(r+1),t h e nk in (-oo,-2] b. [2,oo) c. [-sqrt...

    Text Solution

    |

  3. The sum sum(i=0)^m ((10)c,(i))((20),(m-1)), where ((p),(q))=0 if p ...

    Text Solution

    |

  4. ""^(n)C(r+1)+^(n)C(r-1)+2.""^(n)C(r)=

    Text Solution

    |

  5. If an=sum(r=0)^n1/(^n Cr) , then sum(r=0)^n r/(^n Cr) equals (n-1)an b...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. Prove that the sum of the coefficients in the expansion of (1 + x ...

    Text Solution

    |

  8. If n and k are positive integers, show that 2^k(nC 0)(n k)-2^(k-1)(nC1...

    Text Solution

    |

  9. For any positive integer (m,n) (with ngeqm), Let ((n),(m)) =.^nCm Prov...

    Text Solution

    |

  10. Prove that (3!)/(2(n+3))=sum(r=0)^n(-1)^r((^n Cr)/(^(r+3)Cr))

    Text Solution

    |

  11. Let n be a positive integer and (1+x+x^2)^n=a0+a1x+ . . . . +a(2n)x^(2...

    Text Solution

    |

  12. Prove that C0-2^2C1+3^2C2-4^2C3++(-1)^n(n+1)^2xxCn=0w h e r eCr=^n Cr ...

    Text Solution

    |

  13. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |

  14. Prove that C(1)^(2)-2*C(2)^(2)+3*C(3)^(2)-…-2n*C(2n)^(2)=(-1)^(n)n*C(n...

    Text Solution

    |

  15. (.^(n)C(0))^(2)+(.^(n)C(1))^(2)+(.^(n)C(2))^(2)+ . . .+(.^(n)C(n))^(2)...

    Text Solution

    |

  16. The coefficient of x^(18) in the product (1+x)(1-x)^(10)(1+x+x^(2))^(9...

    Text Solution

    |

  17. The term independent of x in the expansion of (1/60-(x^(8))/81).(2x^(...

    Text Solution

    |

  18. Value of r for which expression ^20Cr ^20C0+^20C(r-1) ^20C1+^20C(r-2)^...

    Text Solution

    |

  19. If the fractional part of the number (2^(403))/(15) is (k)/(15) then k...

    Text Solution

    |

  20. Let X = (.^(10)C(1))^(2) + 2(.^(10)C(2))^(2) + 3(.^(10)C(3))^(2) + "……...

    Text Solution

    |