Home
Class 12
MATHS
Prove that C(1)^(2)-2*C(2)^(2)+3*C(3)^(2...

Prove that `C_(1)^(2)-2*C_(2)^(2)+3*C_(3)^(2)-…-2n*C_(2n)^(2)=(-1)^(n)n*C_(n)`

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^n=underset(r=0)overset(n)C_(r)x^r then prove that C_(1)^2+2.C_(2)^(2)+3.C_(3)^2 +…….+n.C_(n)^(2)=((2n-1)!/((n-1)!)^2

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If C_(0) , C_(1) , C_(2) ,…, C_(n) are coefficients in the binomial expansion of (1 + x)^(n) and n is even , then C_(0)^(2)-C_(1)^(2)+C_(2)^(2)+C_(3)^(2)+...+ (-1)^(n)C_(n)""^(2) is equal to .

Show that C_1^2-2C_2^2+3.C_3^2- ……….-2n.C_(2n)^2=(-1)^(n-1).n.C_n where C_r stands for ''^(2n)C_r''

Prove that (^(2n)C_0)^2-(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

Prove that: .^(2)C_(2)+^(3)C_(2)+^(4)C_(2)+…..+^(n+1)C_(2)=1/6n(n+1)(n+2)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

Prove that: .^(2)C_(2)+^(3)C_(2)+^(4)C_(2)+…..+^(n+1)C_(2)=1/6n(n+1)(n+2)

Prove that: ^(2n)C_0-3.^(2n)C_1+3^2.^(2n)C_2-..+(-1)^(2n) ..3^(2n)^(2n)C_(2n)=4^n for all value of N

VMC MODULES ENGLISH-BINOMIAL THEOREM-JEE Archive
  1. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  2. If ^n-1Cr=(k^2-3)^n C(r+1),t h e nk in (-oo,-2] b. [2,oo) c. [-sqrt...

    Text Solution

    |

  3. The sum sum(i=0)^m ((10)c,(i))((20),(m-1)), where ((p),(q))=0 if p ...

    Text Solution

    |

  4. ""^(n)C(r+1)+^(n)C(r-1)+2.""^(n)C(r)=

    Text Solution

    |

  5. If an=sum(r=0)^n1/(^n Cr) , then sum(r=0)^n r/(^n Cr) equals (n-1)an b...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. Prove that the sum of the coefficients in the expansion of (1 + x ...

    Text Solution

    |

  8. If n and k are positive integers, show that 2^k(nC 0)(n k)-2^(k-1)(nC1...

    Text Solution

    |

  9. For any positive integer (m,n) (with ngeqm), Let ((n),(m)) =.^nCm Prov...

    Text Solution

    |

  10. Prove that (3!)/(2(n+3))=sum(r=0)^n(-1)^r((^n Cr)/(^(r+3)Cr))

    Text Solution

    |

  11. Let n be a positive integer and (1+x+x^2)^n=a0+a1x+ . . . . +a(2n)x^(2...

    Text Solution

    |

  12. Prove that C0-2^2C1+3^2C2-4^2C3++(-1)^n(n+1)^2xxCn=0w h e r eCr=^n Cr ...

    Text Solution

    |

  13. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |

  14. Prove that C(1)^(2)-2*C(2)^(2)+3*C(3)^(2)-…-2n*C(2n)^(2)=(-1)^(n)n*C(n...

    Text Solution

    |

  15. (.^(n)C(0))^(2)+(.^(n)C(1))^(2)+(.^(n)C(2))^(2)+ . . .+(.^(n)C(n))^(2)...

    Text Solution

    |

  16. The coefficient of x^(18) in the product (1+x)(1-x)^(10)(1+x+x^(2))^(9...

    Text Solution

    |

  17. The term independent of x in the expansion of (1/60-(x^(8))/81).(2x^(...

    Text Solution

    |

  18. Value of r for which expression ^20Cr ^20C0+^20C(r-1) ^20C1+^20C(r-2)^...

    Text Solution

    |

  19. If the fractional part of the number (2^(403))/(15) is (k)/(15) then k...

    Text Solution

    |

  20. Let X = (.^(10)C(1))^(2) + 2(.^(10)C(2))^(2) + 3(.^(10)C(3))^(2) + "……...

    Text Solution

    |