Home
Class 12
MATHS
(.^(n)C(0))^(2)+(.^(n)C(1))^(2)+(.^(n)C(...

`(.^(n)C_(0))^(2)+(.^(n)C_(1))^(2)+(.^(n)C_(2))^(2)+ . . .+(.^(n)C_(n))^(2)` equals

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

if (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a++.^(n)C_(2)a^(2)+ . . .+.^(n)C_(n)a^(n) , then prove that (.^(n)C_(1))/(.^(n)C_(0))+(2(.^(n)C_(2)))/(.^(n)C_(1))+(3(.^(n)C_(3)))/(.^(n)C_(2))+. . . +(n(.^(n)C_(n)))/(.^(n)C_(n-1))= Sum of first n natural numbers.

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

If (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a+.^(n)C_(2)a^(2)+ . . +.^(n)C_(n)a^(n) , then prove that .^(n)C_(1)+2.^(n)C_(2)+3.^(n)3C_(3)+ . . .+n.^(n)C_(n)=n.2^(n-1) .

If C_(0) , C_(1) , C_(2) ,…, C_(n) are coefficients in the binomial expansion of (1 + x)^(n) and n is even , then C_(0)^(2)-C_(1)^(2)+C_(2)^(2)+C_(3)^(2)+...+ (-1)^(n)C_(n)""^(2) is equal to .

Prove that (""^(2n)C_(0))^2-(""^(2n)C_(1))^2+(""^(2n)C_(2))^2-.....+(-1)^n(""^(2n)C_(2n))^2=(-1)^n.""^(2n)C_(n)

If S_(n) = (.^(n)C_(0))^(2) + (.^(n)C_(1))^(2) + (.^(n)C_(n))^(n) , then maximum value of [(S_(n+1))/(S_(n))] is "_____" . (where [*] denotes the greatest integer function)

Find the sum .^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n) .

Evaluate .^(n)C_(0).^(n)C_(2)+2.^(n)C_(1).^(n)C_(3)+3.^(n)C_(2).^(n)C_(4)+"...."+(n-1).^(n)C_(n-2).^(n)C_(n) .

If (1+x)^(n) = C_(0)+C_(1)x + C_(2) x^(2) +...+C_(n)x^(n) then C_(0)""^(2)+C_(1)""^(2) + C_(2)""^(2) +...+C_(n)""^(2) is equal to

VMC MODULES ENGLISH-BINOMIAL THEOREM-JEE Archive
  1. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  2. If ^n-1Cr=(k^2-3)^n C(r+1),t h e nk in (-oo,-2] b. [2,oo) c. [-sqrt...

    Text Solution

    |

  3. The sum sum(i=0)^m ((10)c,(i))((20),(m-1)), where ((p),(q))=0 if p ...

    Text Solution

    |

  4. ""^(n)C(r+1)+^(n)C(r-1)+2.""^(n)C(r)=

    Text Solution

    |

  5. If an=sum(r=0)^n1/(^n Cr) , then sum(r=0)^n r/(^n Cr) equals (n-1)an b...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. Prove that the sum of the coefficients in the expansion of (1 + x ...

    Text Solution

    |

  8. If n and k are positive integers, show that 2^k(nC 0)(n k)-2^(k-1)(nC1...

    Text Solution

    |

  9. For any positive integer (m,n) (with ngeqm), Let ((n),(m)) =.^nCm Prov...

    Text Solution

    |

  10. Prove that (3!)/(2(n+3))=sum(r=0)^n(-1)^r((^n Cr)/(^(r+3)Cr))

    Text Solution

    |

  11. Let n be a positive integer and (1+x+x^2)^n=a0+a1x+ . . . . +a(2n)x^(2...

    Text Solution

    |

  12. Prove that C0-2^2C1+3^2C2-4^2C3++(-1)^n(n+1)^2xxCn=0w h e r eCr=^n Cr ...

    Text Solution

    |

  13. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |

  14. Prove that C(1)^(2)-2*C(2)^(2)+3*C(3)^(2)-…-2n*C(2n)^(2)=(-1)^(n)n*C(n...

    Text Solution

    |

  15. (.^(n)C(0))^(2)+(.^(n)C(1))^(2)+(.^(n)C(2))^(2)+ . . .+(.^(n)C(n))^(2)...

    Text Solution

    |

  16. The coefficient of x^(18) in the product (1+x)(1-x)^(10)(1+x+x^(2))^(9...

    Text Solution

    |

  17. The term independent of x in the expansion of (1/60-(x^(8))/81).(2x^(...

    Text Solution

    |

  18. Value of r for which expression ^20Cr ^20C0+^20C(r-1) ^20C1+^20C(r-2)^...

    Text Solution

    |

  19. If the fractional part of the number (2^(403))/(15) is (k)/(15) then k...

    Text Solution

    |

  20. Let X = (.^(10)C(1))^(2) + 2(.^(10)C(2))^(2) + 3(.^(10)C(3))^(2) + "……...

    Text Solution

    |