Home
Class 12
MATHS
The coefficient of x^(18) in the product...

The coefficient of `x^(18)` in the product `(1+x)(1-x)^(10)(1+x+x^(2))^(9)` is

A

84

B

`-126`

C

`-84`

D

`126`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^{18} \) in the product \( (1+x)(1-x)^{10}(1+x+x^2)^{9} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ (1+x)(1-x)^{10}(1+x+x^2)^{9} \] We can rewrite \( (1+x+x^2)^{9} \) using the identity for \( 1+x+x^2 \): \[ 1+x+x^2 = \frac{1-x^3}{1-x} \] Thus, \[ (1+x+x^2)^{9} = \left( \frac{1-x^3}{1-x} \right)^{9} = (1-x^3)^{9}(1-x)^{-9} \] ### Step 2: Substitute back into the expression Now substituting this back into our expression gives: \[ (1+x)(1-x)^{10}(1-x^3)^{9}(1-x)^{-9} \] This simplifies to: \[ (1+x)(1-x)^{1}(1-x^3)^{9} \] since \( (1-x)^{10} \cdot (1-x)^{-9} = (1-x)^{1} \). ### Step 3: Expand the expression Now we need to expand: \[ (1+x)(1-x)(1-x^3)^{9} \] First, we expand \( (1+x)(1-x) \): \[ (1+x)(1-x) = 1 - x^2 \] Thus, our expression becomes: \[ (1 - x^2)(1-x^3)^{9} \] ### Step 4: Expand \( (1-x^3)^{9} \) Using the Binomial Theorem, we expand \( (1-x^3)^{9} \): \[ (1-x^3)^{9} = \sum_{k=0}^{9} \binom{9}{k} (-1)^k x^{3k} \] ### Step 5: Combine the expansions Now we need to find the coefficient of \( x^{18} \) in: \[ (1 - x^2) \sum_{k=0}^{9} \binom{9}{k} (-1)^k x^{3k} \] This can be split into two parts: 1. The term from \( 1 \cdot \sum_{k=0}^{9} \binom{9}{k} (-1)^k x^{3k} \) 2. The term from \( -x^2 \cdot \sum_{k=0}^{9} \binom{9}{k} (-1)^k x^{3k} \) ### Step 6: Find the coefficient of \( x^{18} \) 1. From \( 1 \cdot \sum_{k=0}^{9} \binom{9}{k} (-1)^k x^{3k} \), we need \( 3k = 18 \) which gives \( k = 6 \). The coefficient is: \[ \binom{9}{6} (-1)^6 = \binom{9}{6} = 84 \] 2. From \( -x^2 \cdot \sum_{k=0}^{9} \binom{9}{k} (-1)^k x^{3k} \), we need \( 3k + 2 = 18 \) which gives \( 3k = 16 \) or \( k = \frac{16}{3} \), which is not an integer, so this contributes \( 0 \). ### Final Step: Combine the results Thus, the total coefficient of \( x^{18} \) is: \[ 84 + 0 = 84 \] ### Conclusion The coefficient of \( x^{18} \) in the product \( (1+x)(1-x)^{10}(1+x+x^2)^{9} \) is \( \boxed{84} \).
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|14 Videos
  • CIRCLES

    VMC MODULES ENGLISH|Exercise JEE ADVANCED ( ARCHIVE )|68 Videos

Similar Questions

Explore conceptually related problems

The coefficient of x^(n) in the expansion of ((1 + x)/(1-x))^(2), is

The coefficient of x^(101) in the expansion of (1 - x) (1- 2x) (1 - 2^(2) x) - (1 - 2^(101) x) is

The coefficient of x^(6) in log[(1+x)^(1+x)(1-x)^(1-x)]=

The coefficient of x^9 in the expansion of (1-5x)/(1+x) is

The coefficient of x^(10) in the expansion of (1+x)^(15)+(1+x)^(16)+(1+x)^(17)+… +(1+x)^(30)

Find the coefficient of x^(10) in the expansion of (1-x^(2))^(10)

Find the coefficient of x^(10) in the expansion of (1-x^(2))^(10)

Find the coefficient of x^8 in the expansion of (x^2-1/x)^(10)

The coefficient of x^(n) in the expansion of ((1+x)^(2))/((1 - x)^(3)) , is

The coefficient of x^(5) in the expansion of 1+(1+x)+(1+x)^(2)+……..+(1+x)^(10) is equal to

VMC MODULES ENGLISH-BINOMIAL THEOREM-JEE Archive
  1. The value of ((30), (0))((30), (10))-((30), (1))((30),( 11)) +(30 2)(3...

    Text Solution

    |

  2. If ^n-1Cr=(k^2-3)^n C(r+1),t h e nk in (-oo,-2] b. [2,oo) c. [-sqrt...

    Text Solution

    |

  3. The sum sum(i=0)^m ((10)c,(i))((20),(m-1)), where ((p),(q))=0 if p ...

    Text Solution

    |

  4. ""^(n)C(r+1)+^(n)C(r-1)+2.""^(n)C(r)=

    Text Solution

    |

  5. If an=sum(r=0)^n1/(^n Cr) , then sum(r=0)^n r/(^n Cr) equals (n-1)an b...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. Prove that the sum of the coefficients in the expansion of (1 + x ...

    Text Solution

    |

  8. If n and k are positive integers, show that 2^k(nC 0)(n k)-2^(k-1)(nC1...

    Text Solution

    |

  9. For any positive integer (m,n) (with ngeqm), Let ((n),(m)) =.^nCm Prov...

    Text Solution

    |

  10. Prove that (3!)/(2(n+3))=sum(r=0)^n(-1)^r((^n Cr)/(^(r+3)Cr))

    Text Solution

    |

  11. Let n be a positive integer and (1+x+x^2)^n=a0+a1x+ . . . . +a(2n)x^(2...

    Text Solution

    |

  12. Prove that C0-2^2C1+3^2C2-4^2C3++(-1)^n(n+1)^2xxCn=0w h e r eCr=^n Cr ...

    Text Solution

    |

  13. If (1 + x)^(n) = C(0) = C(1) x + C(2) x^(2) + …+ C(n) x^(n) , find...

    Text Solution

    |

  14. Prove that C(1)^(2)-2*C(2)^(2)+3*C(3)^(2)-…-2n*C(2n)^(2)=(-1)^(n)n*C(n...

    Text Solution

    |

  15. (.^(n)C(0))^(2)+(.^(n)C(1))^(2)+(.^(n)C(2))^(2)+ . . .+(.^(n)C(n))^(2)...

    Text Solution

    |

  16. The coefficient of x^(18) in the product (1+x)(1-x)^(10)(1+x+x^(2))^(9...

    Text Solution

    |

  17. The term independent of x in the expansion of (1/60-(x^(8))/81).(2x^(...

    Text Solution

    |

  18. Value of r for which expression ^20Cr ^20C0+^20C(r-1) ^20C1+^20C(r-2)^...

    Text Solution

    |

  19. If the fractional part of the number (2^(403))/(15) is (k)/(15) then k...

    Text Solution

    |

  20. Let X = (.^(10)C(1))^(2) + 2(.^(10)C(2))^(2) + 3(.^(10)C(3))^(2) + "……...

    Text Solution

    |