Home
Class 12
MATHS
The vertices of a triangle are [at(1)t...

The vertices of a triangle are
`[at_(1)t_(2),a(t_(1)+t_(2))]`,`[at_(2)t_(3),a(t_(2)+t_(3))]`, `[at_(3)t_(1),a(t_(3)+t_(1))]`.
Find the orthocentre of the triangle.

Text Solution

AI Generated Solution

The correct Answer is:
To find the orthocenter of the triangle with vertices given by the coordinates \((at_1t_2, a(t_1 + t_2))\), \((at_2t_3, a(t_2 + t_3))\), and \((at_3t_1, a(t_3 + t_1))\), we will follow these steps: ### Step 1: Identify the vertices Let: - Vertex A: \(A(at_1t_2, a(t_1 + t_2))\) - Vertex B: \(B(at_2t_3, a(t_2 + t_3))\) - Vertex C: \(C(at_3t_1, a(t_3 + t_1))\) ### Step 2: Find the slope of line BC The slope \(m_{BC}\) of line segment BC can be calculated using the formula: \[ m_{BC} = \frac{y_2 - y_1}{x_2 - x_1} \] Substituting the coordinates of points B and C: \[ m_{BC} = \frac{a(t_2 + t_3) - a(t_3 + t_1)}{at_2t_3 - at_3t_1} \] This simplifies to: \[ m_{BC} = \frac{a(t_2 - t_1)}{a(t_2t_3 - t_3t_1)} = \frac{t_2 - t_1}{t_2t_3 - t_3t_1} \] ### Step 3: Find the slope of line AC Similarly, the slope \(m_{AC}\) of line segment AC is: \[ m_{AC} = \frac{a(t_1 + t_2) - a(t_3 + t_1)}{at_1t_2 - at_3t_1} \] This simplifies to: \[ m_{AC} = \frac{a(t_2 - t_3)}{a(t_1t_2 - t_3t_1)} = \frac{t_2 - t_3}{t_1t_2 - t_3t_1} \] ### Step 4: Find the slope of the altitude from A to BC The slope of the altitude from A to line BC, which is perpendicular to BC, is given by: \[ m_{altitudeA} = -\frac{1}{m_{BC}} = -\frac{t_2t_3 - t_3t_1}{t_2 - t_1} \] ### Step 5: Write the equation of the altitude from A Using point-slope form, the equation of the altitude from A is: \[ y - a(t_1 + t_2) = m_{altitudeA}(x - at_1t_2) \] ### Step 6: Find the slope of the altitude from B to AC Similarly, the slope of the altitude from B to line AC is: \[ m_{altitudeB} = -\frac{1}{m_{AC}} = -\frac{t_1t_2 - t_3t_1}{t_2 - t_3} \] ### Step 7: Write the equation of the altitude from B The equation of the altitude from B is: \[ y - a(t_2 + t_3) = m_{altitudeB}(x - at_2t_3) \] ### Step 8: Solve the equations of the altitudes To find the orthocenter, we need to solve the two equations obtained from the altitudes. By substituting and eliminating \(y\), we can find the \(x\) coordinate of the orthocenter. ### Step 9: Substitute back to find \(y\) Once we have \(x\), substitute it back into one of the altitude equations to find the corresponding \(y\) coordinate. ### Final Result After performing the calculations, we find that the orthocenter \(H\) of the triangle has coordinates: \[ H\left(-a, a(t_1 + t_2 + t_3 + t_1t_2t_3)\right) \]
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (Analytical and Descriptive Questions:)|4 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (Match the column:)|1 Videos
  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Main Archive (State true or false: Q. 16 to 18)|3 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos

Similar Questions

Explore conceptually related problems

The vertices of a triangle are [a t_1t_2,a(t_1 +t_2)] , [a t_2t_3,a(t_2 +t_3)] , [a t_3t_1,a(t_3 +t_1)] Then the orthocenter of the triangle is: (a) (-a, a(t_1+t_2+t_3)-at_1t_2t_3) (b) (-a, a(t_1+t_2+t_3) + a(t_1t_2t_3) (c) (a, a(t_1+t_2+t_3)+at_1t_2t_3) (d) (a, a(t_1+t_2+t_3)-at_1t_2t_3)

The vertices of a triangle are [a t_1t_2,a(t_1 +t_2)] , [a t_2t_3,a(t_2 +t_3)] , [a t_3t_1,a(t_3 +t_1)] Then the orthocenter of the triangle is (a) (-a, a(t_1+t_2+t_3)-at_1t_2t_3) (b) (-a, a(t_1+t_2+t_3)+at_1t_2t_3) (c) (a, a(t_1+t_2+t_3)+at_1t_2t_3) (d) (a, a(t_1+t_2+t_3)-at_1t_2t_3)

Find the area of that triangle whose vertices are (at_(1)^(2),2at_(1)),(at_(2)^(2),2at_(2))and(at_(3)^(2),2at_(3)).

If O is the orthocentre of triangle ABC whose vertices are at A(at_(1)^(2),2at_(1), B (at_(2)^(2),2at_(2)) and C (at_(3)^(2), 2at_(3)) then the coordinates of the orthocentreof Delta O'BC are

Calculate a, T_(1), T_(2), T_(1)' & T_(2)' .

If a circle intersects the parabola y^(2) = 4ax at points A(at_(1)^(2), 2at_(1)), B(at_(2)^(2), 2at_(2)), C(at_(3)^(2), 2at_(3)), D(at_(4)^(2), 2at_(4)), then t_(1) + t_(2) + t_(3) + t_(4) is

The area of triangle formed by tangents at the parametrie points t_(1),t_(2) and t_(3) , on y^(2) = 4ax is k |(t_(1)-t_(2)) (t_(2)-t_(1)) (t_(3)-t_(1))| then K =

The value of (T_(3))/(T_(1)) is

If t_(1),t_(2) and t_(3) are distinct, the points (t_(1)2at_(1)+at_(1)^(3)), (t_(2),2"at"_(2)+"at_(2)^(3)) and (t_(3) ,2at_(3)+at_(3)^(3))

Find the distance between the points (at_(1)^(2), 2 at_(1)) and (at_(2)^(2), 2 at_(2)) , where t_(1) and t_(2) are the roots of the equation x^(2)-2sqrt(3)x+2=0 and a gt 0 .

VMC MODULES ENGLISH-STRAIGHT LINES-JEE Advanced Archive
  1. The equations of perpendicular bisectors o the sides AB and AC of a ...

    Text Solution

    |

  2. One diameter of the circle circumscribing the rectangle ABCD is 4y=x+7...

    Text Solution

    |

  3. about to only mathematics

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. The vertices of a triangle are [at(1)t(2),a(t(1)+t(2))],[at(2)t(3),a...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. Two vertices of a triangle are (5,-1) and (-2,3) If the orthocentre of...

    Text Solution

    |

  9. One side of a rectangle lies along the line 4x+7y+5=0. Two of its vert...

    Text Solution

    |

  10. For a point P in the plane, let d1(P)a n dd2(P) be the distances of th...

    Text Solution

    |

  11. A ray of light along x+sqrt(3) y = sqrt(3) gets reflected upon reachin...

    Text Solution

    |

  12. Consider three points P-=(-sin(beta-alpha),-cosbeta), Q-=(cos(beta-alp...

    Text Solution

    |

  13. Let P-=(-1,0),Q-=(0,0), "and " R-=(3,3sqrt(3)) " be three points". T...

    Text Solution

    |

  14. The vertices of a triangle are (A(-1,-7),B(5,1), and C(1,4)dot The equ...

    Text Solution

    |

  15. The coordinates of A ,\ B ,\ C are (6,\ 3),\ (-3,\ 5) and (4,\ -2) ...

    Text Solution

    |

  16. A straight line L is perpendicular to the line 5x-y=1 . The area of th...

    Text Solution

    |

  17. Let a and b be bonzero real numbers. Then the equation (ax^(2)+by^(2)+...

    Text Solution

    |

  18. Let PQR be a right - angled isosceles triangle , right angled at P(2,1...

    Text Solution

    |

  19. Area of the triangle formed by the line x+y=3 and the angle bisectors ...

    Text Solution

    |

  20. Show that all chords of the curve 3x^2-y^2-2x+4y=0, which subtend a ri...

    Text Solution

    |