Home
Class 12
MATHS
If |{:(x(1),y(1),1),(x(2),y(2),1),(x(3),...

If `|{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=|{:(a_(1),b_(1),1),(a_(2),b_(2),1),(a_(3),b_(3),1):}|` , then the two triangles with vertices `(x_(1),y_(1))`, `(x_(2),y_(2))`, `(x_(3),y_(3))` and `(a_(1),b_(1))`, `(a_(2),b_(2))` ,`(a_(3),b_(3))` must be congruent.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement is true or false, we need to analyze the given condition regarding the areas of the triangles formed by the provided vertices. ### Step-by-Step Solution: 1. **Understanding the Given Condition**: We are given two sets of points: - Triangle 1 with vertices \((x_1, y_1)\), \((x_2, y_2)\), \((x_3, y_3)\) - Triangle 2 with vertices \((a_1, b_1)\), \((a_2, b_2)\), \((a_3, b_3)\) The condition states that the absolute value of the determinant formed by these points is equal: \[ |{:(x_1, y_1, 1), (x_2, y_2, 1), (x_3, y_3, 1):}| = |{:(a_1, b_1, 1), (a_2, b_2, 1), (a_3, b_3, 1):}| \] 2. **Area of the Triangle**: The area of a triangle formed by the points \((x_1, y_1)\), \((x_2, y_2)\), \((x_3, y_3)\) can be calculated using the determinant: \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] Similarly, the area for Triangle 2 can be calculated. 3. **Equal Areas**: The condition given implies that the areas of both triangles are equal: \[ \text{Area of Triangle 1} = \text{Area of Triangle 2} \] 4. **Congruence of Triangles**: For two triangles to be congruent, they must have: - Equal corresponding sides - Equal corresponding angles However, having equal areas does not guarantee that the triangles are congruent. Triangles can have the same area but different shapes (e.g., different side lengths and angles). 5. **Conclusion**: Since it is possible for two triangles to have equal areas without being congruent, the statement that the two triangles must be congruent is **false**. ### Final Answer: The statement is **false**. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • STRAIGHT LINES

    VMC MODULES ENGLISH|Exercise JEE Advanced Archive (Match the column:)|1 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

If |x_1y_1 1x_2y_2 1x_3y_3 1|=|a_1b_1 1a_2b_2 1a_3b_3 1| then the two triangles with vertices (x_1, y_1),(x_2,y_2),(x_3,y_3) and (a_1,b_1),(a_2,b_2),(a_3,b_3) are equal to area (b) similar congruent (d) none of these

If |x_1y_1 1x_2y_2 1x_3y_3 1|=|a_1b_1 1a_2b_2 1a_3b_3 1| then the two triangles with vertices (x_1, y_1),(x_2,y_2),(x_3,y_3) and (a_1,b_1),(a_2,b_2),(a_3,b_3) are equal to area (b) similar congruent (d) none of these

In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(2),c_(2)),(b_(3),c_(3)):}|-b_(1)|{:(a_(2),c_(2)),(a_(3),c_(3)):}|+c_(1)|{:(a_(2),b_(2)),(a_(3),b_(3)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column The value of k for which determinant |{:(2,3,-1),(-1,-2,k),(1,-4,1):}| vanishes, is "(a) -3 (b) 7/11 (c) -2 (d) 2"

In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(2),c_(2)),(b_(3),c_(3)):}|-b_(1)|{:(a_(2),c_(2)),(a_(3),c_(3)):}|+c_(1)|{:(a_(2),b_(2)),(a_(3),b_(3)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column The value of the determinant |{:(2,3,4),(6,5,7),(1,-3,2):}|is: "(a) 54 (b) 40 (c) -45 (d) -40"

In algebra, the determinant is useful value that can be computer from the elements of a square matrix. The determinant is represented as det 'A' or |A| and its value can be evaluated by the expansion of the determinant as given below (A) Expansion of two order determinant : (B) Expansion of 3^(rd) order determinant (i) With respect to first fow : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=a_(1)|{:(b_(2),c_(2)),(b_(3),c_(3)):}|-b_(1)|{:(a_(2),c_(2)),(a_(3),c_(3)):}|+c_(1)|{:(a_(2),b_(2)),(a_(3),b_(3)):}| =a_(1)(b_(2)c_(3)-b_(3)c_(2))-b_(1)(a_(2)c_(3)-a_(3)c_(2))+c_(1)(a_(2)b_(3)-b_(2)a_(3)) (ii) With respect to second column : |A|=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=-b_(1)|{:(a_(2),c_(1)),(a_(3),c_(3)):}|+b_(2)|{:(a_(1),c_(1)),(a_(3),c_(3)):}|-b_(3)|{:(a_(1),c_(1)),(a_(2),c_(2)):}| Similarly a determinant can be expanded with respect to any row or column. The vaue of the determinant |{:(5,1),(3,2):}|is: "(a) 4 (b) 5 (c) 6 (d) 7 "

If A (x_(1), y_(1)), B (x_(2), y_(2)) and C (x_(3), y_(3)) are vertices of an equilateral triangle whose each side is equal to a, then prove that |(x_(1),y_(1),2),(x_(2),y_(2),2),(x_(3),y_(3),2)| is equal to

Show that if x_(1),x_(2),x_(3) ne 0 |{:(x_(1) +a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}| =x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1))+(a_(2)b_(2))/(x_(2))+(a_(3)b_(3))/(x_(3)))

If (a_(2)a_(3))/(a_(1)a_(4))=(a_(2)+a_(3))/(a_(1)+a_(4))=3((a_(2)-a_(3))/(a_(1)-a_(4))) , then a_(1),a_(2),a_(3),a_(4) are in

Suppose a_(1),a_(2),a_(3) are in A.P. and b_(1),b_(2),b_(3) are in H.P. and let Delta=|(a_(1)-b_(1),a_(1)-b_(2),a_(1)-b_(3)),(a_(2)-b_(1),a_(2)-b_(2),a_(2)-b_(3)),(a_(3)-b_(1),a_(3)-b_(2),a_(3)-b_(3))| then prove that