Home
Class 12
MATHS
The differential equation of the family ...

The differential equation of the family of curves `y=e^x(Acosx+Bsinx),` where `A` and `B` are arbitrary constants is (a) `( b ) (c) (d)(( e ) (f) d^(( g )2( h ))( i ) y)/( j )(( k ) d (l) x^(( m )2( n ))( o ))( p ) (q)-2( r )(( s ) dy)/( t )(( u ) dx)( v ) (w)+2y=0( x )` (y) (z) `( a a ) (bb) (cc)(( d d ) (ee) d^(( f f )2( g g ))( h h ) y)/( i i )(( j j ) d (kk) x^(( l l )2( m m ))( n n ))( o o ) (pp)+2( q q )(( r r ) dy)/( s s )(( t t ) dx)( u u ) (vv)+2y=0( w w )` (xx) (yy) `( z z ) (aaa) (bbb)(( c c c ) (ddd) d^(( e e e )2( f f f ))( g g g ) y)/( h h h )(( i i i ) d (jjj) x^(( k k k )2( l l l ))( m m m ))( n n n ) (ooo)+( p p p ) (qqq)(( r r r ) (sss) (ttt)(( u u u ) dy)/( v v v )(( w w w ) dx)( x x x ) (yyy) (zzz))^(( a a a a )2( b b b b ))( c c c c )+y=0( d d d d )` (eeee) (ffff) `( g g g g ) (hhhh) (iiii)(( j j j j ) (kkkk) d^(( l l l l )2( m m m m ))( n n n n ) y)/( o o o o )(( p p p p ) d (qqqq) x^(( r r r r )2( s s s s ))( t t t t ))( u u u u ) (vvvv)-7( w w w w )(( x x x x ) dy)/( y y y y )(( z z z z ) dx)( a a a a a ) (bbbbb)+2y=0( c c c c c )` (ddddd)

A

`(d^2y)/(dx^2)+2(dy)/(dx)+2y=0`

B

`(d^2y)/(dx^2)-2 (dy)/(dx)+2y=0`

C

`(d^2y)/(dx^2)-2 (dy )/(dx)-2y=0`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential equation of the family of curves given by \( y = e^x (A \cos x + B \sin x) \), where \( A \) and \( B \) are arbitrary constants, we will follow these steps: ### Step 1: Differentiate \( y \) with respect to \( x \) Given: \[ y = e^x (A \cos x + B \sin x) \] We will differentiate \( y \) with respect to \( x \) using the product rule: \[ \frac{dy}{dx} = e^x (A \cos x + B \sin x)' + (e^x)' (A \cos x + B \sin x) \] Calculating the derivatives: \[ (A \cos x + B \sin x)' = -A \sin x + B \cos x \] So, \[ \frac{dy}{dx} = e^x (-A \sin x + B \cos x) + e^x (A \cos x + B \sin x) \] This simplifies to: \[ \frac{dy}{dx} = e^x (B \cos x - A \sin x + A \cos x + B \sin x) = e^x ((B + A) \cos x + (B - A) \sin x) \] ### Step 2: Differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \) Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx} \left( e^x ((B + A) \cos x + (B - A) \sin x) \right) \] Using the product rule again: \[ \frac{d^2y}{dx^2} = e^x ((B + A) \cos x + (B - A) \sin x)' + (e^x)' ((B + A) \cos x + (B - A) \sin x) \] Calculating the derivative: \[ ((B + A) \cos x + (B - A) \sin x)' = -(B + A) \sin x + (B - A) \cos x \] So, \[ \frac{d^2y}{dx^2} = e^x (-(B + A) \sin x + (B - A) \cos x) + e^x ((B + A) \cos x + (B - A) \sin x) \] This simplifies to: \[ \frac{d^2y}{dx^2} = e^x \left( (B - A) \cos x - (B + A) \sin x + (B + A) \cos x + (B - A) \sin x \right) \] Combining like terms: \[ \frac{d^2y}{dx^2} = e^x \left( 2B \cos x + 2A \sin x \right) \] ### Step 3: Substitute back to eliminate \( A \) and \( B \) From the original equation, we can express \( A \) and \( B \) in terms of \( y \) and its derivatives. We have: \[ y = e^x (A \cos x + B \sin x) \] This gives us: \[ A \cos x + B \sin x = \frac{y}{e^x} \] Using the expressions for \( \frac{dy}{dx} \) and \( \frac{d^2y}{dx^2} \), we can eliminate \( A \) and \( B \) to form a differential equation. ### Step 4: Form the differential equation We can rearrange the terms to get: \[ \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 2y = 0 \] Thus, the differential equation of the family of curves is: \[ \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 2y = 0 \] ### Final Answer The differential equation of the family of curves is: \[ \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 2y = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|39 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|11 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos
VMC MODULES ENGLISH-DIFFERENTIAL EQUATIONS-JEE ADVANCE (ARCHIVE )
  1. The differential equation of the family of curves y=e^x(Acosx+Bsinx), ...

    Text Solution

    |

  2. The differential equation (dy)/(dx) = (sqrt(1- y ^(2)))/(y) determinea...

    Text Solution

    |

  3. The differential equation representing the family of curves y^2=2c(...

    Text Solution

    |

  4. Let a solution y=y(x) of the differential equation xsqrt(x^(2)-1) dy-...

    Text Solution

    |

  5. Prove that for x in [0, (pi)/(2)], sin x + 2x ge (3x(x + 1))/(pi).

    Text Solution

    |

  6. Let f: R to R be a continuous function which satisfies f(x)= int0^xf(...

    Text Solution

    |

  7. Let f:[0,1]rarrR (the set of all real numbers) be a function. Suppose ...

    Text Solution

    |

  8. Let f:[0,1]rarrR (the set of all real numbers) be a function. Suppose ...

    Text Solution

    |

  9. Let f(x) = (1 - x)^2 sin^2 x + x^2 for all x ∈ R, and let g(x) = ∫((2...

    Text Solution

    |

  10. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |

  11. The function y=f(x) is the solution of the differential equation (d...

    Text Solution

    |

  12. Let f:[1/2,1]->R (the set of all real numbers) be a positive, non-cons...

    Text Solution

    |

  13. Let the f (x) be differentiabe function on the interval (0,oo) such ...

    Text Solution

    |

  14. Integrating factor of sec^2y dy/dx+x tany=x^3

    Text Solution

    |

  15. Let u(x) and v(x) be two continous functions satisfying the different...

    Text Solution

    |

  16. Let y^(prime)(x)+y(x)g^(prime)(x)=g(x)g^(prime)(x),y(0),x in R , wher...

    Text Solution

    |

  17. A curve passes through the point (1,pi/6) . Let the slope of the curve...

    Text Solution

    |

  18. Tangent is drawn at any point P of a curve which passes through (1, 1...

    Text Solution

    |

  19. A spherical rain drop evaporates at a rate proportional to its surf...

    Text Solution

    |

  20. If length of tangent at any point on the curve y=f(x). Intercepted bet...

    Text Solution

    |

  21. A right circular cone with radius R and height H contains a liquid whi...

    Text Solution

    |