Home
Class 12
MATHS
y(dy)/(dx)sinx=cosx(sinx-(y^2)/2); wher...

`y(dy)/(dx)sinx=cosx(sinx-(y^2)/2);` where at `x=pi/2,`

A

`y^2 = sin x`

B

`y^2 = 2 sin x`

C

`x^2 = sin Y`

D

`x^2 = 2 sin Y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation \[ y \frac{dy}{dx} \sin x = \cos x \left( \sin x - \frac{y^2}{2} \right) \] with the initial condition \( y\left(\frac{\pi}{2}\right) = 1 \), we can follow these steps: ### Step 1: Rearranging the Equation First, we divide both sides by \(\sin x\) (assuming \(\sin x \neq 0\)): \[ y \frac{dy}{dx} = \cos x \sin x - \frac{y^2}{2} \cos x \] ### Step 2: Simplifying the Equation Rearranging gives us: \[ y \frac{dy}{dx} + \frac{y^2}{2} \cos x = \cos x \sin x \] ### Step 3: Substituting \(y^2\) Let \(y^2 = t\). Then, differentiating gives us: \[ 2y \frac{dy}{dx} = \frac{dt}{dx} \] Thus, we can express \(\frac{dy}{dx}\) as: \[ \frac{dy}{dx} = \frac{1}{2y} \frac{dt}{dx} \] ### Step 4: Substituting Back into the Equation Substituting this back into our equation gives: \[ \frac{1}{2} \frac{dt}{dx} + \frac{t}{2} \cos x = \cos x \sin x \] Multiplying through by 2 to eliminate the fractions: \[ \frac{dt}{dx} + t \cos x = 2 \cos x \sin x \] ### Step 5: Identifying the Integrating Factor This is a linear first-order differential equation in standard form: \[ \frac{dt}{dx} + P(x)t = Q(x) \] where \(P(x) = \cos x\) and \(Q(x) = 2 \cos x \sin x\). The integrating factor \(I(x)\) is given by: \[ I(x) = e^{\int P(x) \, dx} = e^{\int \cos x \, dx} = e^{\sin x} \] ### Step 6: Multiplying by the Integrating Factor Multiplying the entire equation by the integrating factor: \[ e^{\sin x} \frac{dt}{dx} + e^{\sin x} t \cos x = 2 e^{\sin x} \cos x \sin x \] ### Step 7: Recognizing the Left Side as a Derivative The left-hand side can be expressed as: \[ \frac{d}{dx} \left( e^{\sin x} t \right) = 2 e^{\sin x} \cos x \sin x \] ### Step 8: Integrating Both Sides Integrating both sides gives: \[ e^{\sin x} t = \int 2 e^{\sin x} \cos x \sin x \, dx \] Using the substitution \(u = \sin x\), \(du = \cos x \, dx\): \[ = 2 \int u e^u \, du \] Using integration by parts: Let \(v = e^u\) and \(dw = u \, du\): \[ = 2 \left( u e^u - \int e^u \, du \right) = 2 \left( u e^u - e^u \right) = 2 e^{\sin x} \left( \sin x - 1 \right) \] Thus: \[ e^{\sin x} t = 2 e^{\sin x} \left( \sin x - 1 \right) + C \] ### Step 9: Solving for \(t\) Dividing by \(e^{\sin x}\): \[ t = 2(\sin x - 1) + Ce^{-\sin x} \] Recalling that \(t = y^2\): \[ y^2 = 2(\sin x - 1) + Ce^{-\sin x} \] ### Step 10: Applying Initial Condition Using the initial condition \(y\left(\frac{\pi}{2}\right) = 1\): \[ 1^2 = 2(1 - 1) + Ce^{-1} \implies 1 = 0 + \frac{C}{e} \implies C = e \] ### Final Solution Substituting \(C\) back into the equation: \[ y^2 = 2(\sin x - 1) + e e^{-\sin x} \] Thus, the final solution is: \[ y^2 = 2(\sin x - 1) + e^{1 - \sin x} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|39 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|11 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos

Similar Questions

Explore conceptually related problems

ysinx dy/dx=(sinx-y^2)cosx

Solve: (d^2y)/dx^2=cosx-sinx

Find dy/dx if y=(cosx)/(1+sinx)

Find dy/dx if 2x-4y=sinx-x^2

The derivative of tan^(-1) ((sinx -cosx)/(sinx +cosx)) , with respect to (x)/(2) , where x in(0,(pi)/(2)) is:

If y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx)" at "x=0 is

Find (dy)/(dx), y=(sinx)^(cosx)+(cosx)^(sinx)

if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

If y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

If y=cos(sinx^2) ,then at x=sqrt((pi)/(2)) , (dy)/(dx)=

VMC MODULES ENGLISH-DIFFERENTIAL EQUATIONS-JEE ADVANCE (ARCHIVE )
  1. y(dy)/(dx)sinx=cosx(sinx-(y^2)/2); where at x=pi/2,

    Text Solution

    |

  2. The differential equation (dy)/(dx) = (sqrt(1- y ^(2)))/(y) determinea...

    Text Solution

    |

  3. The differential equation representing the family of curves y^2=2c(...

    Text Solution

    |

  4. Let a solution y=y(x) of the differential equation xsqrt(x^(2)-1) dy-...

    Text Solution

    |

  5. Prove that for x in [0, (pi)/(2)], sin x + 2x ge (3x(x + 1))/(pi).

    Text Solution

    |

  6. Let f: R to R be a continuous function which satisfies f(x)= int0^xf(...

    Text Solution

    |

  7. Let f:[0,1]rarrR (the set of all real numbers) be a function. Suppose ...

    Text Solution

    |

  8. Let f:[0,1]rarrR (the set of all real numbers) be a function. Suppose ...

    Text Solution

    |

  9. Let f(x) = (1 - x)^2 sin^2 x + x^2 for all x ∈ R, and let g(x) = ∫((2...

    Text Solution

    |

  10. Consider the statements : P : There exists some x IR such that f(x)...

    Text Solution

    |

  11. The function y=f(x) is the solution of the differential equation (d...

    Text Solution

    |

  12. Let f:[1/2,1]->R (the set of all real numbers) be a positive, non-cons...

    Text Solution

    |

  13. Let the f (x) be differentiabe function on the interval (0,oo) such ...

    Text Solution

    |

  14. Integrating factor of sec^2y dy/dx+x tany=x^3

    Text Solution

    |

  15. Let u(x) and v(x) be two continous functions satisfying the different...

    Text Solution

    |

  16. Let y^(prime)(x)+y(x)g^(prime)(x)=g(x)g^(prime)(x),y(0),x in R , wher...

    Text Solution

    |

  17. A curve passes through the point (1,pi/6) . Let the slope of the curve...

    Text Solution

    |

  18. Tangent is drawn at any point P of a curve which passes through (1, 1...

    Text Solution

    |

  19. A spherical rain drop evaporates at a rate proportional to its surf...

    Text Solution

    |

  20. If length of tangent at any point on the curve y=f(x). Intercepted bet...

    Text Solution

    |

  21. A right circular cone with radius R and height H contains a liquid whi...

    Text Solution

    |