Home
Class 12
MATHS
Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If...

Let `d/(dx)F(x)=((e^(sinx))/x),x > 0.` If `int_1^4 3/x e^sin x^3dx=F(k)-F(1),` then one of the possible values of `k ,` is: 15 (b) 16 (c) 63 (d) 64

A

16

B

63

C

64

D

15

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the instructions provided in the video transcript and derive the solution systematically. ### Step 1: Understand the given information We are given: \[ \frac{d}{dx} F(x) = \frac{e^{\sin x}}{x}, \quad x > 0 \] We also have the integral: \[ \int_1^4 \frac{3}{x} e^{\sin x^3} \, dx = F(k) - F(1) \] ### Step 2: Manipulate the integral To solve the integral, we will multiply and divide by \(x^2\): \[ \int_1^4 \frac{3}{x} e^{\sin x^3} \, dx = \int_1^4 \frac{3x^2}{x^3} e^{\sin x^3} \, dx \] ### Step 3: Change of variables Let \(t = x^3\). Then, we differentiate: \[ dt = 3x^2 \, dx \quad \Rightarrow \quad dx = \frac{dt}{3x^2} \] When \(x = 1\), \(t = 1^3 = 1\). When \(x = 4\), \(t = 4^3 = 64\). Substituting these into the integral: \[ \int_1^4 \frac{3}{x} e^{\sin x^3} \, dx = \int_1^{64} \frac{e^{\sin t}}{t} \, dt \] ### Step 4: Relate the integral to \(F(k) - F(1)\) From the original equation, we have: \[ \int_1^{64} \frac{e^{\sin t}}{t} \, dt = F(k) - F(1) \] Since \(\frac{d}{dx} F(x) = \frac{e^{\sin x}}{x}\), we can express the integral as: \[ F(64) - F(1) = F(k) - F(1) \] ### Step 5: Equate and solve for \(k\) Since \(F(1)\) cancels out from both sides, we have: \[ F(64) = F(k) \] This implies that \(k = 64\). ### Final Answer Thus, one of the possible values of \(k\) is: \[ \boxed{64} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|11 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE )|28 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos

Similar Questions

Explore conceptually related problems

Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int_1^4 3/x e^sin (x^3)dx=F(k)-F(1), then one of the possible values of k , is: (a) 15 (b) 16 (c) 63 (d) 64

Let (d)/(dx) F(x)=(e^(sin x))/(x), x gt 0 , If int_(1)^(4) (3)/(x) e^(sin x^(3))dx=F(k)-F(1) , then one of the possible value of k is -

Let d/(dx) (F(x))= e^(sinx)/x, x>0 . If int_1^4 2e^sin(x^2)/x dx = F(k)-F(1) , then possible value of k is:

Let f(x)= {(((xsinx+2cos2x)/(2))^((1)/(x^(2))),,,,xne0),(e^(-K//2),,,,x=0):} if f(x) is continous at x=0 then the value of k is (a) 1 (b) 2 (c) 3 (d) 4

Let f(x)=x+2|x+1|+x-1|dotIff(x)=k has exactly one real solution, then the value of k is 3 (b) 0 (c) 1 (d) 2

If f(x)=1+1/x int_1^x f(t)dt , then the value of f(e^(-1)) is (a) 1 (b) 0 (c) -1 (d) none of these

If f(x)=x+1 , then write the value of d/(dx)(fof)(x) .

If d/dx (ϕ(x))=f(x) , then int_(1)^(2) f(x) dx is ______

Let f(x)=x+2|x+1|+2|x-1|dot If f(x)=k has exactly one real solution, then the value of k is (a) 3 (b) 0 (c) 1 (d) 2

If f(x)=(e^x)/(1+e^x), I_1=int_(f(-a))^(f(a))xg(x(1-x)dx and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx , then the value of (I_2)/(I_1) is (a) -1 (b) -2 (c) 2 (d) 1

VMC MODULES ENGLISH-DIFFERENTIAL EQUATIONS-LEVEL -2
  1. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  2. IF x ( dy )/(dx) + y=x . ( f ( x . y) )/( f'(x.y)) then f ( x ...

    Text Solution

    |

  3. Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int1^4 3/x e^sin x^3dx=F(k)-F...

    Text Solution

    |

  4. The solution of the differential equation xdx+ydy+(xdy-ydx)/(x^(2)+y^(...

    Text Solution

    |

  5. The solution of dy/dx = (x^2+y^2+1)/(2xy) satisfying y(1)=0 is given b...

    Text Solution

    |

  6. IF x cos ( y //x ) ( ydx + xdy)=y sin ( y // x) ( xdy - ydx ...

    Text Solution

    |

  7. If f(x) and g(x) are two solutions of the differential equation a (d^(...

    Text Solution

    |

  8. The solution of the differential equation (dy)/(dx) = e^(x-y) (e^(x...

    Text Solution

    |

  9. Solve (dx )/(dy) +x/y= sin y

    Text Solution

    |

  10. Solve: y^(4)dx+2xy^(3)dy=(ydx-xdy)/(x^(3)y^(3))

    Text Solution

    |

  11. A normal is drawn at a point P(x , y) of a curve. It meets the x-axis ...

    Text Solution

    |

  12. If inta^x ty(t)dt=x^2+y(x), then find y(x)

    Text Solution

    |

  13. The solution of differential equation x y^(prime)=x((y^2)/(x^2)+(f((y^...

    Text Solution

    |

  14. Solution of the differential equation (y+xsqrt(x y)(x+y))dx+(ysqrt(x y...

    Text Solution

    |

  15. A function y=f(x) satisfies (x+1)f^(')(x)-2(x^(2)+x)f(x) = e^(x^(2))/(...

    Text Solution

    |

  16. The solution of the differential equation ( dy ) /( dx) +y/x = c...

    Text Solution

    |

  17. The solution of the differential equation 2x ^(2)y (dy)/(dx) = tan ( x...

    Text Solution

    |

  18. The solution of differential equation (2y+xy^(3))+(x+x^(2)y^(2))=0 i...

    Text Solution

    |

  19. The solution of y e^(-x/y)dx-(x e^((-x/y))+y^3)dy=0 is (a) ( b ) (c...

    Text Solution

    |

  20. The curve satisfying the equation (dy)/(dx)=(y(x+y^3))/(x(y^3-x)) and ...

    Text Solution

    |