Home
Class 12
MATHS
IF x cos ( y //x ) ( ydx + xdy)=y...

IF x cos ` ( y //x ) ( ydx + xdy)=y sin ( y // x) ( xdy - ydx )` y (1) = ` 2 pi ` then the value of ` 4 ( y (4) )/(pi ) cos (( y (4))/(4))` is :

A

1

B

2

C

3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given differential equation and find the required value, we will follow these steps: ### Step 1: Rewrite the Given Equation The given equation is: \[ x \cos\left(\frac{y}{x}\right) (y \, dx + x \, dy) = y \sin\left(\frac{y}{x}\right) (x \, dy - y \, dx) \] We can rearrange this equation to isolate terms involving \(dx\) and \(dy\). ### Step 2: Simplify the Equation Rearranging gives: \[ x \cos\left(\frac{y}{x}\right) y \, dx + x^2 \cos\left(\frac{y}{x}\right) dy = y \sin\left(\frac{y}{x}\right) x \, dy - y^2 \sin\left(\frac{y}{x}\right) dx \] Now, we can group the \(dx\) and \(dy\) terms together. ### Step 3: Factor Out Common Terms Factoring out \(dx\) and \(dy\): \[ \left(x \cos\left(\frac{y}{x}\right) y + y^2 \sin\left(\frac{y}{x}\right)\right) dx = \left(y \sin\left(\frac{y}{x}\right) x - x^2 \cos\left(\frac{y}{x}\right)\right) dy \] ### Step 4: Divide by \(xy\) Dividing through by \(xy\) gives: \[ \frac{dx}{x} + \frac{dy}{y} = \frac{\sin\left(\frac{y}{x}\right)}{\cos\left(\frac{y}{x}\right)} \frac{dy}{x} \] This can be rewritten as: \[ \frac{dx}{x} + \frac{dy}{y} = \tan\left(\frac{y}{x}\right) \frac{dy}{x} \] ### Step 5: Integrate Both Sides Integrating both sides: \[ \int \frac{dx}{x} + \int \frac{dy}{y} = \int \tan\left(\frac{y}{x}\right) \frac{dy}{x} \] This results in: \[ \ln |x| + \ln |y| = \ln |C \sec\left(\frac{y}{x}\right)| \] ### Step 6: Exponentiate to Remove Logarithms Exponentiating both sides gives: \[ xy = C \sec\left(\frac{y}{x}\right) \] ### Step 7: Use the Initial Condition We are given \(y(1) = 2\pi\). Plugging this into our equation: \[ 1 \cdot 2\pi = C \sec\left(\frac{2\pi}{1}\right) \] Since \(\sec(2\pi) = 1\), we find: \[ C = 2\pi \] ### Step 8: Substitute Back to Find \(y\) Now we have: \[ xy \cos\left(\frac{y}{x}\right) = 2\pi \] ### Step 9: Find \(y(4)\) To find \(y(4)\): \[ 4y(4) \cos\left(\frac{y(4)}{4}\right) = 2\pi \] This simplifies to: \[ y(4) \cos\left(\frac{y(4)}{4}\right) = \frac{\pi}{2} \] ### Step 10: Calculate the Final Value We need to find: \[ \frac{4y(4)}{\pi} \cos\left(\frac{y(4)}{4}\right) \] From our previous step: \[ \frac{4y(4)}{\pi} \cos\left(\frac{y(4)}{4}\right) = 2 \] Thus, the final answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise NUMERICAL VALUE TYPE FOR JEE MAIN|11 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE )|28 Videos
  • DIFFERENTIAL EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE ADVANCE (ARCHIVE )|32 Videos
  • DIFFERENTIAL CALCULUS 2

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|81 Videos
  • FUNCTIONS

    VMC MODULES ENGLISH|Exercise JEE Main & Advanced|8 Videos

Similar Questions

Explore conceptually related problems

If y ^(2) =3 cos ^(2)x+ 2 sin ^(2)x, then the value of y ^(4) +y^(3) (d^(2)y)/(dx ^(2)) is

For y gt 0 and x in R, ydx + y^(2)dy = xdy where y = f(x). If f(1)=1, then the value of f(-3) is

lf sin(x-y)-cos(x + y) = 1/2 then the values of x & y lying between 0 and pi are given by

If x+y=(4pi)/(3) and sin x = 2 sin y , then

If xsin((y)/(x))dy = (y sin((y)/(x))-x)dx and y(1) = (pi)/(2) then the value of cos((y)/(e^(7))) is __________.

Let x+(1)/(x)=2, y+(1)/(y)=-2 and sin^(-1)x+cos^(-1)y=m pi , then the value of m is

If xdy=ydx+y^2dy and y(1)=1 , then y(-3) is equal to (A) 1 (B) 5 (C) 4 (D) 3

Prove that : (cos x - cos y)^(2) + (sin x - sin y)^(2) = 4 sin^(2) ((x - y)/(2))

Solve the following differential equation, x cos ((y)/(x)) (ydx + xdy) = y sin ((y)/(x)) (xdy- ydx)

xdy-ydx = 2x^(3)y(xdy+ydx) if y(1) = 1, then y(2) +y((1)/(2)) =

VMC MODULES ENGLISH-DIFFERENTIAL EQUATIONS-LEVEL -2
  1. The solution of the differential equation xdx+ydy+(xdy-ydx)/(x^(2)+y^(...

    Text Solution

    |

  2. The solution of dy/dx = (x^2+y^2+1)/(2xy) satisfying y(1)=0 is given b...

    Text Solution

    |

  3. IF x cos ( y //x ) ( ydx + xdy)=y sin ( y // x) ( xdy - ydx ...

    Text Solution

    |

  4. If f(x) and g(x) are two solutions of the differential equation a (d^(...

    Text Solution

    |

  5. The solution of the differential equation (dy)/(dx) = e^(x-y) (e^(x...

    Text Solution

    |

  6. Solve (dx )/(dy) +x/y= sin y

    Text Solution

    |

  7. Solve: y^(4)dx+2xy^(3)dy=(ydx-xdy)/(x^(3)y^(3))

    Text Solution

    |

  8. A normal is drawn at a point P(x , y) of a curve. It meets the x-axis ...

    Text Solution

    |

  9. If inta^x ty(t)dt=x^2+y(x), then find y(x)

    Text Solution

    |

  10. The solution of differential equation x y^(prime)=x((y^2)/(x^2)+(f((y^...

    Text Solution

    |

  11. Solution of the differential equation (y+xsqrt(x y)(x+y))dx+(ysqrt(x y...

    Text Solution

    |

  12. A function y=f(x) satisfies (x+1)f^(')(x)-2(x^(2)+x)f(x) = e^(x^(2))/(...

    Text Solution

    |

  13. The solution of the differential equation ( dy ) /( dx) +y/x = c...

    Text Solution

    |

  14. The solution of the differential equation 2x ^(2)y (dy)/(dx) = tan ( x...

    Text Solution

    |

  15. The solution of differential equation (2y+xy^(3))+(x+x^(2)y^(2))=0 i...

    Text Solution

    |

  16. The solution of y e^(-x/y)dx-(x e^((-x/y))+y^3)dy=0 is (a) ( b ) (c...

    Text Solution

    |

  17. The curve satisfying the equation (dy)/(dx)=(y(x+y^3))/(x(y^3-x)) and ...

    Text Solution

    |

  18. The solution of the differential equation {1+xsqrt(x^(2)+y^(2))}dx +...

    Text Solution

    |

  19. Tangent to a curve intersect y-axis at a point P. A line perpendicular...

    Text Solution

    |

  20. The curve in the first quadrant for which the normal at any point (...

    Text Solution

    |