Home
Class 12
PHYSICS
0.4 hat(i)+0.8 hat(j) + c hat(k) represe...

`0.4 hat(i)+0.8 hat(j) + c hat(k)` represents a unit vector when c is :

A

0.2

B

`sqrt(0.2)`

C

`sqrt(0.8)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( c \) such that the vector \( \mathbf{v} = 0.4 \hat{i} + 0.8 \hat{j} + c \hat{k} \) represents a unit vector, we need to ensure that the magnitude of this vector equals 1. ### Step-by-Step Solution: 1. **Understanding the Magnitude of a Vector**: The magnitude of a vector \( \mathbf{v} = a \hat{i} + b \hat{j} + c \hat{k} \) is given by the formula: \[ |\mathbf{v}| = \sqrt{a^2 + b^2 + c^2} \] In our case, \( a = 0.4 \), \( b = 0.8 \), and \( c = c \). 2. **Setting Up the Equation**: Since we want \( \mathbf{v} \) to be a unit vector, we set the magnitude equal to 1: \[ \sqrt{(0.4)^2 + (0.8)^2 + c^2} = 1 \] 3. **Squaring Both Sides**: To eliminate the square root, we square both sides of the equation: \[ (0.4)^2 + (0.8)^2 + c^2 = 1^2 \] This simplifies to: \[ 0.16 + 0.64 + c^2 = 1 \] 4. **Combining Terms**: Now, combine the constants on the left side: \[ 0.16 + 0.64 = 0.80 \] Thus, we have: \[ 0.80 + c^2 = 1 \] 5. **Isolating \( c^2 \)**: To find \( c^2 \), we subtract 0.80 from both sides: \[ c^2 = 1 - 0.80 \] This gives us: \[ c^2 = 0.20 \] 6. **Finding \( c \)**: To find \( c \), we take the square root of both sides: \[ c = \sqrt{0.20} \] This can be simplified to: \[ c = \sqrt{0.2} \] 7. **Considering the Options**: Since \( c \) can be positive or negative, we typically take the positive root in this context. However, since the question does not specify, we can state: \[ c = \sqrt{0.2} \quad \text{(which is approximately 0.447)} \] ### Conclusion: The value of \( c \) that makes the vector a unit vector is: \[ c = \sqrt{0.2} \]
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Enable|50 Videos
  • BASIC MATHEMATICS & VECTORS

    VMC MODULES ENGLISH|Exercise Efficient|50 Videos
  • CAPACITORS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive ) LEVEL 48|1 Videos

Similar Questions

Explore conceptually related problems

If hat(i), hat(j) and hat(k) represent unit vectors along the x, y and z axes respectively, then the angle theta between the vectors (hat(i) + hat(j) + hat(k)) and (hat(i) + hat(j)) is equal to :

If a unit vector is represented by 0.5 hat(i) + 0.8 hat(j) + c hat(k) , then the value of c is

If vec(a) = hat(i) + hat(j) + 2 hat(k) , vec(b) = 2 hat(j) + hat(k) and vec (c) = hat(i) + hat(j) + hat(k) . Find a unit vector perpendicular to the plane containing vec(a), vec(b), vec(c)

If a vector 2 hat (i) + 3 hat(j) + 8 hat(k) is perpendicular to the vector - 4 hat(i) + 4 hat(j) + alpha(k) . Then the value of alpha is

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

overset(rarr)A is a vector which when added to the resultant of vectors (2 hat I - 3 hat j + 4 hat k) and (hat i+5 hat j +2 hat k) yields a unit vector along the y axis then vector overset(rarr)A is :

If points A,B and C with position vectors 2 hat(i) - hat(j) + hat(k) , hat(i) - 3 hat(j) - 5hat(k) and alpha hat(i) - 3 hat(j) + hat(k) respectively are the vertices of a right-anged triangle with /_C = ( pi )/( 2) , then the values of alpha are

If vec a.hat i= vec a.( hat i+ hat j)= vec a.( hat i+ hat j+ hat k) , then find the unit vector vec a

If hat i ,\ hat j ,\ hat k\ are unit vectors, then hat idot hat j=1 b. hat idot hat i=1 c. hat ixx hat j=1 d. hat ixx( hat jxx hat k)=1

Let vec a=2 hati+hat j+ hat k , vec b=hat i+2hat j- hatk and a unit vector vec c be coplanar. If vec c is perpendicular to vec a , then vec c is a. 1/(sqrt(2))(-hat j+hat k) b. 1/(sqrt(3))(-hat i-hat j-hat k)"" c. 1/(sqrt(5))(-hat k-2 hat j) d. 1/(sqrt(3))(hat i-hat j- hat k)

VMC MODULES ENGLISH-BASIC MATHEMATICS & VECTORS-Impeccable
  1. 0.4 hat(i)+0.8 hat(j) + c hat(k) represents a unit vector when c is :

    Text Solution

    |

  2. Square of the resultant of two forces of equal magnitude is equal to t...

    Text Solution

    |

  3. If |vec(A)xxvec(B)|=sqrt(3)vec(A).vec(B), then the value of |vec(A)+ve...

    Text Solution

    |

  4. The vectors from origin to the points A and B are vec(a)=3hat(i)-6hat(...

    Text Solution

    |

  5. Which of the following is incorrect ?

    Text Solution

    |

  6. The minimum number of vectors to give zero resultant is …………………………………....

    Text Solution

    |

  7. Two vectors vec(A) and vec(B) are such that |vec(A)+vec(B)|=|vec(A)-ve...

    Text Solution

    |

  8. OF the vectors given below, the parallel vectors are : vec(A) = 6hat...

    Text Solution

    |

  9. If |vec(A) xx vec(B)| = sqrt(3) vec(A).vec(B) then the value of |vec(A...

    Text Solution

    |

  10. For any two vectors vec(A) and vec(B), if vec(A).vec(B) = |vec(A) xx v...

    Text Solution

    |

  11. A particle moves from position 3hat(i) + 2hat(j) - 6hat(k) to 14hat(i)...

    Text Solution

    |

  12. The sides of a parallelogram represented by vectors p = 5hat(i) - 4hat...

    Text Solution

    |

  13. If overset(rarr)A=2 hat i + 3 hat j- hat k and overset(rarr)B=-hat i...

    Text Solution

    |

  14. Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4h...

    Text Solution

    |

  15. Which of the following is a vector quantity ?

    Text Solution

    |

  16. A unit radial vector hatr makes angles of alpha = 30^(@) relative to ...

    Text Solution

    |

  17. What is the value of m if the vectors 2hat(i)-hat(j)+hat(k), hat(i)+...

    Text Solution

    |

  18. Three forces A = (hat(i) + hat(j) + hat(k)), B = (2hat(i) - hat(j) + 3...

    Text Solution

    |

  19. vec(A) is a vector with magnitude A, then the unit vector hat(A) in th...

    Text Solution

    |

  20. Two forces of 12N and 8N act upon a body. The resultant force on the b...

    Text Solution

    |

  21. Given two vectors A = -4hat(i) + 4hat(j) + 2hat(k) and B = 2hat(i) - h...

    Text Solution

    |